GoogleNet神经网络介绍

2024-04-02 15:44

本文主要是介绍GoogleNet神经网络介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

GoogleNet,也称为GoogLeNet,是谷歌工程师设计的一种深度神经网络结构,它在2014年的ImageNet图像识别挑战赛中取得了冠军。该神经网络的设计特点主要体现在其深度和宽度上,通过引入名为Inception的核心子网络结构,使得网络能够在多个尺度上提取特征,从而增强了其预测能力。

AlexNet与VGG都只有一个输出层

GoogleNet有三个输出层(其中两个为辅助分类器)

二、inception结构

初始结构

之前的网络,比如AlexNet和VGG都是串行结构:将卷积层、最大池化下采样和全连接层连接起来。

inception结构所使用的是并行结构:在上一层输出之后,将得到的特征矩阵同时输入到4个分支中进行处理,处理之后,将我们所得到的四个分支的特征矩阵按深度进行拼接得到输出特征矩阵 。

第一个分支是 1x1 大小的卷积核

第二个分支是 3x3 大小的卷积核

第三个分支是 5x5 大小的卷积核

第四个分支是 3x3 大小的池化核的最大池化下采样 

通过这四个分支,得到不同尺度的特征矩阵。

ps:每个分支所得的特征矩阵高和宽必须相同,否则无法沿深度方向进行拼接。

降维的inception结构

图中三个黄色方框的 1x1 卷积核起到降维的作用。

具体的降维原理 

1、初始通道为512,使用64个 5x5 的卷积核进行卷积。

所需要参数计算公式:卷积核尺寸 x 输入特征矩阵的深度 x 卷积核的个数

第一种情况所需要的参数是 819200,非常大的一个数值。

2、初始通道为512,使用24个 1x1 的卷积核进行卷积,再使用64个 5x5 的卷积核进行卷积。

先使用24个 1x1 的卷积核进行卷积对输入特征矩阵进行降维,因为特征矩阵的深度是由卷积核的个数决定的, 所以会将512深度变为24深度,再进行计算所需要的参数个数。

将两部分使用卷积核的需要参数相加,即为全部所需要的参数,一共50688。

很明显,通过使用 1x1 的卷积核进行降维之后,所需要的参数大大减少。

降维的目的就是为了减少输入特征矩阵的深度,从而减少卷积参数,减少计算量。

 三、辅助分类器

具体实现

1、池化层

第一层是一个平均池化下采样:池化核 5x5, 步距为3,

第一个辅助分类器来自于 inception(4a) 的输出 14 x 14 x 512,第二个辅助分类器来自于 inception(4d) 的输出 14 x 14 x 528。

根据矩阵尺寸大小计算公式 out = (14 - 5 + 0) / 3 + 1,

所以第一个辅助分类器的输出为 4 x 4 x 512

第二个辅助分类器的输出为 4 x 4 x 528。(池化不改变特征矩阵的深度)

2、卷积降维

采用128个卷积核大小为 1x1 的卷积层进行卷积处理,目的是为了降低维度,并且使用了relu激活函数。

3、全连接层

采用节点为1024的全连接层,使用relu激活函数。

全连接层与全连接层之间使用dropout函数,以 70% 的比例随机失活神经元。(百分比可根据具体情况更改比例)

4、输出

输出层的节点个数对应数据集的类别个数, 再通过softmax激活函数得到概率分布。

图示说明

第一个辅助分类器来自于 inception(4a)

第二个辅助分类器来自于 inception(4d)

四、参数表格

第一列:一系列层的名称

第二列:卷积核或者是池化核的参数大小       

第三列:经过计算后的输出的特征矩阵的大小

辅助分类器中的参数

 # 1 x 1 :辅助分类器中1 x 1 卷积核的个数

#  3 x 3 reduce :在 3 x 3卷积前 1x1 卷积降维处理的个数

#  3 x 3 :辅助分类器中3 x 3 卷积核的个数

#  5 x 5 reduce :在 5 x 5卷积前 1x1 卷积降维处理的个数

#  5 x 5 : 辅助分类器中5 x 5 卷积核的个数

#  pool proj :在最大池化后进行的 1x1 卷积降维处理的个数

下图标注可帮助理解。

大家可以在网上找GoogleNet整个神经网络的图片,再结合那一整张参数列表帮助自己更好的理解整个GoogleNet神经网络。 

这篇关于GoogleNet神经网络介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870386

相关文章

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

nginx介绍及常用功能

什么是nginx nginx跟Apache一样,是一个web服务器(网站服务器),通过HTTP协议提供各种网络服务。 Apache:重量级的,不支持高并发的服务器。在Apache上运行数以万计的并发访问,会导致服务器消耗大量内存。操作系统对其进行进程或线程间的切换也消耗了大量的CPU资源,导致HTTP请求的平均响应速度降低。这些都决定了Apache不可能成为高性能WEB服务器  nginx:

多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信

目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds  总结  fd_set操作接口  timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充  获取新连接 注意点 -- 通信时的调用函数 添加新fd到