tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现

2024-04-02 07:38

本文主要是介绍tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要讲述了使用tf.keras实现一个简单的单边量线性回归f(x)=ax+b的过程

打开Anaconda,进入tensflow环境,打开JupyterLab

1.查看tensorflow版本的方法

import tensorflow as tf #tensorflow引用方式
print(tf.__version__)  #tensorflow版本

import tensorflow as tf 
print('Tensorflow Version:{}'.format(tf.__version__))

运行结果如下:
在这里插入图片描述

2.单边量线性回归

单变量线性回归算法f(x)=ax+b(比如,x表示教育水平,y表示收入),映射了输入特征和输出值
(1)读取数据集
使用panadas读取数据集

import pandas as pd
data = pd.read_csv('./Desktop/income2.csv')#读取放置在桌面,名称为income2,格式为csv的文件
dataopen

运行结果如下图:
在这里插入图片描述
数据集:可以在Excel中自行输入数据,保存为csv格式的数据集即可,下面是本文所使用的的数据集,任意数据集均可
在这里插入图片描述
(2)基于数据集绘图
从上面的数据集我们可以看出,教育水平越高,收入也变得越高,我们可以认为这两者之间有线性关系,这种线性关系可以通过绘图进行认识,我们基于matplotlib进行绘图

import pandas as pd
data = pd.read_csv('./Desktop/income2.csv')import matplotlib.pyplot as plt 
%matplotlib inline
plt.scatter(data.Education, data.Income)#data.Education为x轴,data.Income为y轴,scatter为散点图

运行结果如下图:
在这里插入图片描述
由上图我们可以看到,教育水平和收入近似满足一个线性关系,这个线性关系可以用f(x)=ax+b进行描述。
下面我们需要建立一个预测模型对其进行描述,建立此模型的过程即求解该线性关系的过程,这样我们就建立起了一个简单的机器学习模型
(3)模型建立
预测目标:预测函数f(x)与真实值之间的整体性误差最小,即找到一个最能拟合散点图的f(x)
损失函数:使用均方差作为成本函数,也就是预测值和真实值之间差的平方取均值
优化目标:使得均方差(f(x)-y)*2越小越好
在这里插入图片描述

%config IPCompleter. greedy=True  #TAB键代码自动提示
#使用tf.keras实现一个简单的单边量线性回归f(x)=ax+b
import pandas as pd
import tensorflow as tf 
data = pd.read_csv('./Desktop/income2.csv')import matplotlib.pyplot as plt 
%matplotlib inline
#plt.scatter(data.Education, data.Income)#data.Education为x轴,data.Income为y轴x = data.Education
y = data.Income
model = tf.keras.Sequential()#初始化Sequential模型,一种顺序模型
#此时这个模型中什么也没有,接下来需要对模型添加层
#layers中有很多层,比较常用的一种是Dense层
model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
#f(x)=ax+b为一维,写入1;输入数据形状input_shape也是一维(元组形式)
model.summary()#反映整个模型
model.compile(optimizer='adam',loss='mse')#编译模型,使用optimizer优化算法
history = model.fit(x, y, epochs=2000)#训练2000次

运行结果如下图:
在这里插入图片描述
在这里插入图片描述
后面的运行结果省略

可以看到,训练次数越多,损失值越小

(4)模型预测

model.predict(pd.Series([20]))#预测教育水平为20时的收入

运行结果如下:
在这里插入图片描述
即模型预测教育水平为20时,收入为34.39621

这篇关于tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869376

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一