HRnet人体姿态估计的C++部署

2024-04-01 21:04

本文主要是介绍HRnet人体姿态估计的C++部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一. 导出模型
    • 二、编译运行
    • 三、原理
      • 3.1 骨骼点识别(姿态估计)
      • 3.2 higher hrnet

一. 导出模型

附件位置:1.导出模型

  1. 进入Pytorch环境(可以使用Conda或者docker)
docker run --gpus all -it --name env_pyt_1.12 -v $(pwd):/app nvcr.io/nvidia/pytorch:22.03-py3
  1. 我们采用了bottom up的骨骼点检测算法,higher hrnet。 首先我们clone官方git(我做了fork备份)
# 克隆
git clone https://github.com/enpeizhao/HigherHRNet-Human-Pose-Estimation.git# 安装
pip install -r requirements.txt# 安装COCOAPI:# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
# Install into global site-packages
make install
# Alternatively, if you do not have permissions or prefer
# not to install the COCO API into global site-packages
python3 setup.py install --user# 安装 CrowdPose
git clone https://github.com/Jeff-sjtu/CrowdPose
# 安装步骤与COCOAPI类似
make install
python3 setup.py install --user
  1. 使用自己训练的模型,或使用官方的骨骼点模型,下面用官方提供的模型作为例子, 在higher hrnet的目录下运行
# 依赖
pip install onnx onnxruntime onnxsim
# 导出
python tools/export.py --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml     TEST.MODEL_FILE weights/pose_higher_hrnet_w32_512.pth

导出模型后会得到hrnet.onnx, 和hrnet_sim.onnx

二、编译运行

附件位置:2.项目代码

# 构建
cmake -S . -B build
cmake --build build# 转TensorRT engine
./build/build --onnx_file ./weights/hrnet_sim.onnx --input_h 512 --input_w 512 --input_c 3# 启动推流服务器,下载rtsp-simple-server (改名叫mediamtx了),请下载对应的版本
# https://github.com/aler9/mediamtx/releases# 启动rtmp服务器
./start_server.sh# 测试文件或者视频流
# 单线程
./build/stream --vid rtsp --hrnet ./weights/hrnet_sim.engine --stream
# 多线程
./build/thread --vid rtsp --hrnet ./weights/hrnet_sim.engine --stream

如果是jetson nano或者jetson NX,请使用课程附件:4.jetson,操作流程参考之前课程。

三、原理

3.1 骨骼点识别(姿态估计)

骨骼点识别(Human Pose Estimation, HPE)是计算机视觉领域中的重要任务,旨在从图像或视频中检测和定位人体关节。目前的骨骼点识别方法主要分为两类:自顶向下(Top-Down)和自底向上(Bottom-Up)。

  • 自顶向下方法(Top-Down): 自顶向下方法首先对整张图像进行人体检测,识别出所有可能的人体区域,然后分别对每个检测到的人体区域进行关键点检测和定位。这种方法通常包括以下两个步骤:
    • 人体检测:在这一步中,通常使用预训练的目标检测模型(如Faster R-CNN、SSD或YOLO等)对图像中的人体进行检测。检测结果包括多个边界框,每个边界框对应一个人体实例。
    • 关键点检测:对于每个检测到的人体实例,使用预训练的关键点检测模型(如OpenPose、Hourglass或CPM等)对其关键点进行检测和定位。最后,通过关键点之间的连线构建出完整的人体姿态。
  • 自底向上方法(Bottom-Up): 自底向上方法直接在整张图像上进行关键点检测,然后将检测到的关键点通过一定的规则分组,形成不同人体的姿态。这种方法主要包括以下两个步骤:
    • 关键点检测:使用预训练的关键点检测模型(如OpenPose、Hourglass或CPM等)对整张图像进行关键点检测。与自顶向下方法不同,自底向上方法不需要进行人体检测。
    • 关键点分组:将检测到的关键点根据一定的规则(如距离、方向、颜色等)进行分组,形成不同人体的姿态。分组方法通常包括启发式搜索、图分割或者使用图神经网络等。
项目计算复杂度准确性
top-down计算复杂度较高,一般人越多越慢。对每个检测到的人体实例进行关键点检测,这使得它在处理遮挡和重叠情况时具有较好的准确性。
但如果人体检测阶段出现误检或漏检,将直接影响关键点检测的准确性。
Bottom-up计算复杂度相对较低。
但在人体关键点分组阶段,可能需要更复杂的算法来处理遮挡和重叠的情况
在关键点检测阶段不受人体检测结果的影响,但在关键点分组阶段可能面临较大的挑战,尤其是在人体遮挡和重叠较为严重的场景中。

3.2 higher hrnet

本文中我们使用的是bottom up的多人骨骼点检测算法——higher hrnet。

参考:HigherHRNet: Scale-Aware Representation Learning for
Bottom-Up Human Pose Estimation

它是基于heat map的关键点检测算法,并使用associate embedding将点对应到个人。

如下图,是单人身体不同部位的关键点对应的heatmap,比如这里一共有14张图(14个关键点):

想象一下,如果是多人,则每个人都会检测出来14个关键点:

此时heatmap大致长这样,同一张图上是不同人的同一类型关键点,如第一幅图,是两个人的鼻子的位置

为了将检测结果对应到个人,需要用到Associative Embedding。网络需要对每个关节点的每个像素位置产生一个标签,也就是说,每个关节点的heatmap对应一个标签heatmap,因此,如果一张图片中待检测的关节点有 m 个,则网络理想状态下会输出 2m 个通道m 个通道用于定位, m 个通道用于分组

具体来说,可以用非极大值抑制(non-maximun suppression)来取得每个关节heatmap峰值,然后检索其对应位置的标签,再比较所有身体位置的标签,找到足够接近的标签分为一组,这样就将关节点匹配单个人身上,整个过程如下图所示:

参考:Associative Embedding: End-to-End Learning for Joint Detection and Grouping

其中标签所在的heatmap类似分割任务,如下图所示:

如下图:我们检查higher hrnet的网络可以看到2个输出:

  • Heat maps:(n,17,256,256),17个身体部位关键点的heatmap;
  • embedding:(n, 34, 512, 512),后17个图是heatmap对应的标签heatmap。

最后代码中需要执行以下步骤:

  • heatmap NMS:每个关节heatmap峰值(课程里我们使用CUDA kernel来加速的,效果查看附件:3.NMS演示下2张图。

  • Associative Embedding:为了将检测结果对应到个人,这里参考的是以下代码:
    • Python版:
      • https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation/blob/master/lib/core/group.py
      • https://github.com/princeton-vl/pose-ae-train/blob/454d4ba113bbb9775d4dc259ef5e6c07c2ceed54/utils/group.py
    • C++ 版:
      • https://docs.openvino.ai/latest/omz_models_model_higher_hrnet_w32_human_pose_estimation.html
      • https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/cpp/models/src/associative_embedding_decoder.cpp

代码中的动作识别根据关节夹角关系实现:

这篇关于HRnet人体姿态估计的C++部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868137

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现