Linux 内核优化简笔 - 高并发的系统

2024-04-01 18:12

本文主要是介绍Linux 内核优化简笔 - 高并发的系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Linux 服务器在高并发场景下,默认的内核参数无法利用现有硬件,造成软件崩溃、卡顿、性能瓶颈。

当然,修改参数只是让Linux更好软件的去利用已有的硬件资源,如果硬件资源不够也无法解决问题的。而且当硬件资源不足的时候,某些参数过大可能也会占用多余资源,或者影响稳定性。 或者让单个进程占用过多资源,影响整体系统的运行。

写本文的起因主要是对zabbix 服务器的高并发需求,还有数据库、Nginx、ES集群的高并发需求。

在这里插入图片描述

博客:https://songxwn.com

注意:

在/etc/sysctl.conf 修改的,可以使用sysctl -p 立即生效,使用sysctl -a 查看当前数值。

在/etc/security/limits.conf 修改的,需要重启服务或系统才能生效,或者用ulimit 单独去配置。

最大文件打开句柄数量 - max open files

Linux 下一切皆文件,一般如果遇到文件句柄达到上限时,会碰到"Too many open files"或者Socket/File: Can’t open so many files等错误。

在 linux 中,每个连接都会占用一个文件句柄,所以句柄数量限制同样也会限制最大连接数, 对于像 Nginx 这样的反向代理,对于每个请求,它会与 client 和 upstream server 分别建立一个连接,即占据两个文件句柄,所以理论上来说 Nginx 能同时处理的连接数最多是系统最大文件句柄数限制的一半。

lsof | wc -l
# 可以查看当前打开文件的数量

系统级和进程级限制、异步 I/O 操作的最大数目

vim /etc/sysctl.conf
fs.file-max = 9223372036854775807
fs.nr_open = 1073741816
fs.aio-max-nr = 1048576 
sysctl -p
# 应用
cat /proc/sys/fs/file-max
# 查看实时

用户级限制

vim /etc/security/limits.conf
* soft nofile 1024000
* hard nofile 1024000
ulimit -a
# 需要重启生效

消息队列大小

vim /etc/sysctl.conf
kernel.msgmnb = 65536
# 单个消息队列中单个消息的最大允许大小(以字节为单位)
kernel.msgmax = 65536
# 用于指定从一个进程发送到另一个进程的消息的最大长度
kernel.shmmax = 18446744073692774399
# 定义 Linux 进程在其虚拟地址空间中可分配的单个共享内存段的最大字节大小。
kernel.shmall = 18446744073692774399
# 定义可用于系统范围的共享内存页面总数。要使用整个主内存,kernel.shmall 参数的值应当为主内存大小总计。

最大用户进程

vim /etc/security/limits.conf
* soft nproc 127671
* hard nproc 127671
ulimit -a

虚拟内存大小 - vm.max_map_count

限制一个进程可以拥有的VMA(虚拟内存区域)的数量,常用于 ES集群。

vim /etc/sysctl.conf
vm.max_map_count=655360
sysctl -p
sysctl -a|grep vm.max_map_count

调整stack size的大小

Linux系统初始的堆栈大小

vim /etc/security/limits.conf
* soft stack 262140
* hard stack 262140

网络相关

调整网络设备积压队列以避免数据包丢弃

vim /etc/sysctl.conf
net.core.netdev_max_backlog = 25000

TCP TIME_WAIT 连接复用开启

如果短连接并发量较高,它所在 netns 中 TIME_WAIT 状态的连接就比较多,而 TIME_WAIT 连接默认要等 2MSL 时长才释放,长时间占用源端口,当这种状态连接数量累积到超过一定量之后可能会导致无法新建连接。

所以建议开启 TIME_WAIT 复用,即允许将 TIME_WAIT 连接重新用于新的 TCP 连接:

vim /etc/sysctl.conf
net.ipv4.tcp_tw_reuse=1

套字节接受和发送缓冲区

vim /etc/sysctl.conf
net.core.rmem_default=26214400
net.core.wmem_default=26214400 
net.core.rmem_max=26214400  
net.core.wmem_max=26214400 

TCP 接受和发送缓冲区 最低/默认/最大

vim /etc/sysctl.conf
net.ipv4.tcp_rmem=16384 26214400 26214400
net.ipv4.tcp_wmem=32768 26214400 26214400

TCP窗口大小

vim /etc/sysctl.conf
net.ipv4.tcp_window_scaling=1
# TCP 窗口大小缩放

调大TCP全连接连接队列的大小

vim /etc/sysctl.conf
net.core.somaxconn=65535

UDP 接受和发送缓冲区

UDP socket 的发送和接收缓冲区是有上限的,如果缓冲区较小,高并发环境可能导致缓冲区满而丢包,从网络计数可以看出来:

vim /etc/sysctl.conf
net.ipv4.udp_mem=374394 26214400 26214400

TCP BBR - 高延迟/高丢包网络优化

介绍文章: https://songxwn.com/TCP_BBR/

vim /etc/sysctl.conf
net.core.default_qdisc=fq
net.ipv4.tcp_congestion_control=bbr
# 需要内核4.9以上,BBRv3 需要安装较新的Xanmod内核。

TCP/UDP本地端口新建范围

高并发场景,对于 client 来说会使用大量源端口,源端口范围从 net.ipv4.ip_local_port_range 这个内核参数中定义的区间随机选取,在高并发环境下,端口范围小容易导致源端口耗尽,使得部分连接异常。通常 Pod 源端口范围默认是 32768-60999,建议将其扩大.

vim /etc/sysctl.conf
net.ipv4.ip_local_port_range = 15000 64000
# 默认是32768 60999 ,注意不要和已有端口冲突。

net.netfilter.nf_conntrack_max 用于控制连接跟踪表的最大大小

.net.netfilter.nf_conntrack_max不是越高越好,通常根据内存大小进行设置。
nf_conntrack_max计算公式(64位)
CONNTRACK_MAX = RAMSIZE (inbytes)/16384/2

例如你的机器是一个64GB 64bit的系统,那么最合适的值是

CONNTRACK_MAX = 6410241024*1024/16384/2 = 2097152

vim /etc/sysctl.conf
net.netfilter.nf_conntrack_max = 1048576
net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60
net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_established = 3600
net.nf_conntrack_max = 1048576

最终推荐参数

sysctl

cat > /etc/sysctl.conf <<EOF
fs.file-max = 9223372036854775807
fs.nr_open = 1073741816
kernel.msgmnb = 65536
kernel.msgmax = 65536
vm.max_map_count=655360
net.core.netdev_max_backlog = 25000
net.ipv4.tcp_tw_reuse=1
net.ipv4.tcp_rmem=16384 26214400 26214400
net.ipv4.tcp_wmem=32768 26214400 26214400
net.ipv4.tcp_window_scaling=1
net.core.somaxconn=65535
net.core.rmem_default=26214400
net.core.wmem_default=26214400 
net.core.rmem_max=26214400  
net.core.wmem_max=26214400
net.ipv4.udp_mem=374394 26214400 26214400
net.ipv4.ip_local_port_range=15000 64000
net.netfilter.nf_conntrack_max = 1048576
net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60
net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_established = 3600
net.nf_conntrack_max = 1048576
EOF
# 配置
sysctl -p
# 

ulimit

cat > /etc/security/limits.conf <<EOF
* soft nofile 1024000
* hard nofile 1024000
* soft nproc 127671
* hard nproc 127671
* soft stack 262140
* hard stack 262140
EOF
# 需要重启系统/进程/重新登录才能生效。

参考:

https://support.huaweicloud.com/trouble-ecs/ecs_trouble_0324.html

百看不如一练,动手测试单机百万连接的保姆级教程!

https://support.huaweicloud.com/ecs_faq/ecs_faq_1327.html

https://cloud.tencent.com/document/product/213/46400

https://cloud.tencent.com/document/product/213/57336

https://imroc.cc/kubernetes/best-practices/performance-optimization/network

https://access.redhat.com/documentation/zh-cn/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/parameters-affecting-performance-of-database-applications_adjusting-kernel-parameters-for-database-servers

https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid?hl=zh-cn

https://access.redhat.com/documentation/zh-cn/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/tuning-udp-connections_tuning-the-network-performance

https://cloud.google.com/blog/products/gcp/5-steps-to-better-gcp-network-performance

这篇关于Linux 内核优化简笔 - 高并发的系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/867815

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听