【5G 接口协议】CU与DU之间的F1协议介绍

2024-04-01 09:36

本文主要是介绍【5G 接口协议】CU与DU之间的F1协议介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持!
博主链接

本人就职于国际知名终端厂商,负责modem芯片研发。
在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。


博客内容主要围绕:
       5G/6G协议讲解
       算力网络讲解(云计算,边缘计算,端计算)
       高级C语言讲解
       Rust语言讲解



文章目录

  • 一、CU与DU之间的F1协议介绍
  • 二、F1接口的功能
    • 2.1 控制面功能
      • 2.1.1 `F1 Setup`
      • 2.1.2 `Reset`
      • 2.1.3 `Error Indication`
      • 2.1.4 `gNB-DU Configuration Update`
      • 2.1.5 `gNB-CU Configuration Update`
      • 2.1.6 `gNB-DU Resource Coordination`
      • 2.1.7 `gNB-DU Status Indication`
      • 2.1.8 `Initial UL RRC Message Transfer`
      • 2.1.9 `DL RRC Message Transfer`
      • 2.1.10 `UL RRC Message Transfer`
      • 2.1.11 `UE Context Setup`
      • 2.1.12 `UE Context Modification`
      • 2.1.13 `UE Context Release`
      • 2.1.14 `UE Inactivity Notification`
      • 2.1.15 `Notify`
      • 2.1.16 `System Information Delivery`
      • 2.1.17 `Write-Replace Warning`
      • 2.1.18 `Paging`
    • 2.2 用户面功能
      • 2.2.1 `PDU Type 0`
      • 2.2.2 `PDU Type 1`
  • 三、总结
  • 参考

一、CU与DU之间的F1协议介绍

       gNB CU与gNB DU通过F1接口连接,F1又分为控制面(F1-C)和用户面(F1-U),其中F1-C用于传输信令,而F1-U用于数据传输。下图说明了属于F1接口的CP和UP协议栈。控制面使用SCTP协议,而用户面使用GTP-U协议。

请添加图片描述

二、F1接口的功能

F1接口执行下面的管理操作:

请添加图片描述

2.1 控制面功能

2.1.1 F1 Setup

       F1 Setup流程用于在CU-CP和DU之间创建一条逻辑F1连接。在启动F1 Setup之前,必须在CU-CP和DU之间建立一个SCTP连接。DU通过发送一个F1 Setup Request消息来启动这个过程,而CU-CP通过返回一个F1 Setup Response来完成这个过程。F1 Setup Request用于告知CU-CP DU的身份和DU支持的小区集合。F1 Setup Response用于指示哪些DU小区应该被激活。

2.1.2 Reset

       Reset过程可以由CU-CP发起,也可以由DU发起。它用于重置所有F1AP UE上下文,或F1AP UE上下文的一个特定子集。当CU-CP发起Reset流程时,DU释放F1接口的所有相关资源和所有相关无线资源。当DU发起复位时,CU-CP释放F1接口的所有相关资源。该过程使用Reset/Reset确认握手。它不会导致F1接口本身重置。

2.1.3 Error Indication

       该过程可以由CU-CP或DU发起。它用于报告在传入的F1 AP消息中检测到错误。当相关信令流程中的错误消息无法上报时可以使用Error Indication

2.1.4 gNB-DU Configuration Update

       DU使用此消息向CU-CP更新关于其支持的小区集信息。gNB-DU配置更新消息允许添加新小区、修改或删除现有的小区。CU-CP使用GNB-DU Configuration Update Acknowledge消息确认更新。

2.1.5 gNB-CU Configuration Update

       CU使用此消息向DU更新关于激活或去激活的小区集信息。当激活一个小区时,CU能够指定激活小区的PCI。CU通过GNB-CU Configuration Update消息启动该过程,而DU通过GNB-CU Configuration Update Acknowledge消息确认更新。

2.1.6 gNB-DU Resource Coordination

       适用于gNB和NG-eNB共享重叠覆盖区域的频谱。F1AP过程用作对应的XnAP过程的一部分,即F1AP过程用于在CU和DU之间转发XnAP消息。F1AP: GNB-DU Resource Coordination Request消息用于封装XnAP: E-UTRA – NR Cell Resource Coordination Request消息。类似地,F1AP响应封装了XnAP响应。DU是这个过程的目标,而不是CU,因为它会影响位于DU内部的分组调度器。

2.1.7 gNB-DU Status Indication

       DU可以通过gNB-DU Status Indication消息上报CU是否过载。gNB-DU Status Indication消息只包含一个标志,表示DU是否过载。

2.1.8 Initial UL RRC Message Transfer

       用于将初始的上行RRC消息从DU转发到CU-CP。此初始上行消息属于CCCH,例如RRC Setup Request消息。该过程还用于向CU-CP通知由DU分配的C-RNTI,并向CU-CP提供CellGroupConfig参数结构,其中包括有关新连接的RLC、MAC和物理层配置的信息。此外,该过程用于发起建立跨F1接口的UE相关连接。这是通过向CU-CP提供gNB-DU UE F1AP Identity来实现的,该标识可用于在任何后续消息传输期间寻址与UE相关的连接。CU-CP在第一个DL RRC消息传输中提供相应的gNB-CU UE F1AP Identity

2.1.9 DL RRC Message Transfer

       用于从CU-CP向DU传输下行RRC消息。CU-CP生成RRC消息,并在PDCP层中处理。然后它们作为PDCP PDU被传输到DU。DL RRC Message Transfer消息可以包含一个标志,指示DU应用SRB重复功能。重复传输通过使用多个载波传输相同的RRC消息来提高可靠性。此外,DL RRC Message Transfer消息可以包括RAT频率优先信息,当传输RRC消息时用于DU内的优先级决策。

2.1.10 UL RRC Message Transfer

       用于从DU向CU-CP传输上行RRC消息。DU接收来自UE的RRC消息,并在物理层、MAC层和RLC层进行处理,然后传输到CU-CP。

2.1.11 UE Context Setup

       F1AP UE Context Setup流程包括UE Context Setup RequestUE Context Setup Response。该过程总是由CU-CP发起。在初始连接建立的情况下,在AMF的NG-C:Initial UE Context Setup Request之后,F1AP:UE Context Setup Request消息。通过F1AP的UE Context Setup Request消息可以配置一组SRB和一组DRB。DU为每个DRB提供上行GTP-U TEID,允许上行用户平面数据向CU传输。F1AP的UE Context Setup Response消息详细说明了对应的下行GTP-U TEID。UE上下文设置过程也可以在进入切换过程中使用,即在目标DU创建一个新的UE上下文。在决定切换后,即从UE收到RRC Measurement Report后,CU立即向目标DU请求新的UE上下文。

2.1.12 UE Context Modification

       CU-CP通过修改终端上下文流程更新初始化终端上下文设置时提供的配置。它也可以用来指示DU停止或重新开始向UE传输。UE Context Modification Request消息可用于封装RRC消息,DU随后将该消息发送给UE。当DU从CU发送的UE Context Modification Request消息中收到RRC重配置信息,其会向终端转发这条RRC重配置信息。DU使用UE Context Modification Required流程更新下行GTP-U TEID集合。它还可以指定释放特定SRB和DRB的要求。此外,当gNB和NG-eNB共享重叠覆盖的频谱时,它可以提供关于其小区的更新信息,并指定更新资源协调信息的需求。

2.1.13 UE Context Release

       CU-CP可以通过UE Context Release流程释放已存在的UE上下文。DU可以向CU发送UE Context Release Request消息来请求CU发起该过程,并且发送该消息对应于该UE上下文释放请求过程。

2.1.14 UE Inactivity Notification

       通过此操作,DU可以上报终端的非活动状态。DU会指示每个DRB的“活跃”或“不活跃”。

2.1.15 Notify

       当特定的DRB不再满足GFBR时,Notify过程允许DU通知CU-CP。这适用于启用Notification Control的GBR QoS流。如果随后又满足GFBR要求,DU也能够去通知CU。

2.1.16 System Information Delivery

       这个过程允许CU-CP向DU提供Other System Information(OSI)类型的列表,以便在特定的小区上广播。OSI包括SIB2到SIB9。系统信息传递过程可以通过终端请求广播其他系统信息来触发。

2.1.17 Write-Replace Warning

       这个过程允许CU发起或覆盖警告消息广播。这些信息适用于公共警报系统(PWS)。该过程使用CU-CP和DU之间的Write-Replace Warning RequestWrite-Replace Warning ResponseWrite-Replace Warning Request消息包含了需要广播的PWS系统信息。CU-CP可以使用PWS取消流程指示DU停止广播PWS系统信息。DU使用PWS重启指示程序向CU提供一个有可用PWS信息的小区列表。DU使用PWS故障指示流程向CU提供PWS传输失败的小区列表。

2.1.18 Paging

       CU-CP在请求DU寻呼特定终端时使用paging流程。paging消息包含UE标识索引,可用于计算目标UE的寻呼帧。寻呼消息可以包括RAN UE Paging Identity (I-RNTI)或Core Network UE Paging Identity (S-TMSI)。当使用RRC Inactive状态时,I-RNTI被分配给UE。DU还提供了寻呼DRX周期长度、寻呼优先级和传输寻呼消息的小区列表。

2.2 用户面功能

       F1-U的用户平面用于在CU-UP和DU之间传输应用层数据。每个DRB建立一个隧道,并使用TEID来识别每个隧道。运行在GTP-U层之上的用户面协议提供了与下行数据传输相关的各种控制机制,这些控制机制包括流量控制、丢包检测和成功递交报告。用户面协议使用的帧格式称为PDU Type 0,由CU发送,PDU Type 1由DU发送。

请添加图片描述

2.2.1 PDU Type 0

       CU-UP使用PDU Type 0为每个下行数据包添加一个序列号。DU使用这个序列号来检测丢失的数据包。CU-CP也可以使用POU类型来提供各种丢弃指令。如果DU报告无线链路中断,那么CU-UP可能尝试使用第二个DU从PDCP层重新传输。如果第二个DU上报PDCP PDU递交成功,则CU-UP通知原DU丢弃已成功递交的报文,以避免不必要的传输。
请添加图片描述

2.2.2 PDU Type 1

       DU使用PDU Type 1来报告任何丢失的数据包,并控制CU发送下行数据的速率,即它提供了一种流量控制机制,以避免DU内部的缓冲区变得太满。DU会指示成功递交的最高PDCP PDU序列号、期望的缓冲区级别和期望的数据速率。期望的数据速率指定为DU希望在1秒的时间间隔内接收的字节数。CU使用这些信息元素来确定发送给DU的数据量。DU也可以使用PDU Type 1来表示无线电链路中断或无线电链路恢复。

请添加图片描述

三、总结

  • F1接口是一个开放接口,F1两端的接口可以是不同的设备商;
  • 3GPP TS 38.470介绍了F1、3GPP TS 38.473介绍了F1AP、3GPP TS 38.425介绍了F1- U;
  • F1接口支持节点之间的信令和数据交换;
  • 从逻辑角度来看,F1是端点之间的点对点接口,这意味着即使端点之间没有物理直接连接,点对点逻辑接口也应该是可行的;
  • F1接口支持控制平面和用户平面分离;
  • F1接口分离了无线网络层和传输网络层;
  • F1接口可以交换终端相关的信息和非终端相关的信息;

参考

  • 3GPP TS 38.470 5G NG-RAN F1 general aspects and principles
  • 3GPP TS 38.473 5G NG-RAN; F1 Application Protocol (F1AP)
  • 3GPP TS 38.425 5G NG-RAN; NR user plane protocol


在这里插入图片描述

这篇关于【5G 接口协议】CU与DU之间的F1协议介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866815

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现