[数字图像处理]图像复原--逆滤波

2024-04-01 07:08

本文主要是介绍[数字图像处理]图像复原--逆滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.逆滤波的问题点

      图像的老化,可以视为以下这样的一个过程。一个是退化函数的影响(致使图片模糊,褪色等),一个可加性噪声的影响。

用算式表示为 

    前几篇博文,主要是介绍可加性噪声的去除。本博文,主要介绍图像的逆滤波,即退化函数的去除。然而,逆滤波在空间域内的处理是很不方便的。
    简单的来考虑,加法的逆运算是减法,乘法的逆运算的除法,微分的逆运算是积分(严密一点说是不定积分)。那么就可以得到一个简单的结论了,要出去卷积的话,肯定需要用到卷积的逆运算。卷积的逆运算是---------反卷积,额,好像是一个理所应当的名字。 我们建立了一个关于卷积的直观认识,将信号反转与滤波器系数求积和。那么,反卷积是一种什么样的运算呢?或者具体的来讲,反卷积的空间运算表现形式是什么样的?这样的考虑其实是多余的,或者说,不用考虑的那么复杂。
    在之前的博文中([数字图像处理]频域滤波(1)--基础与低通滤波器),我们得到这样的一个重要的结论。空间域内的卷积,其实就是频域内的乘积。那么这么考虑,就非常简单了,频域内的逆滤波运算,其实就是做除法。我们通过傅里叶变换,可以得到如下一个频域内的老化模型。
    

这样一个表达式内,没有了卷积运算,是一个很简单的四则运算。那么,所谓的去卷积或者逆滤波,就是将退化函数去除的过程。这样看来的话,直接做除法就可以了,如下所示。

    按照教材上的说法,这个表达式很有趣(哪里有趣了?)。首先,必须知道精确的退化函数。其次,如果退化函数含有0值或者极小值的话,会使得噪声项变得极大。
    综上所述,其实逆滤波的问题点有两个:、
    1.退化函数的推测。
    2.尽可能的不让噪声项影响画质。
   

2.两个退化函数的模型

   2.1 大气湍流模型 


   这个模型很简单,与高斯LPF很相似。伴随着值的增大,得到的图像越来越模糊。以下是这个模型执行的结果。

从表示式上可以看出&

这篇关于[数字图像处理]图像复原--逆滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866525

相关文章

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

6.4双边滤波

目录 实验原理 示例代码1 运行结果1 实验代码2 运行结果2 实验原理 双边滤波(Bilateral Filtering)是一种非线性滤波技术,用于图像处理中去除噪声,同时保留边缘和细节。这种滤波器结合了空间邻近性和像素值相似性的双重加权,从而能够在去噪(平滑图像)的同时保留图像的边缘细节。双边滤波器能够在的同时,保持边缘清晰,因此非常适合用于去除噪声和保持图像特征。在Op

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》P98

更改为 差分的数学表达式从泰勒级数展开式可得: 后悔没听廖老师的。 禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码

6.3中值滤波

目录 实验原理 示例代码1 运行结果1 示例代码2 运行结果2 实验原理 中值滤波(Median Filtering)是一种非线性滤波技术,常用于图像处理中去除噪声,特别是在保留边缘的同时减少椒盐噪声(salt-and-pepper noise)。OpenCV中的cv::medianBlur函数可以实现中值滤波。 函数原型 void medianBlur( InputAr

【控制算法 数据处理】一阶滤波算法

简单介绍: 一阶滤波算法是比较常用的滤波算法,它的滤波结果=a*本次采样值+(1-a)*上次滤波结果,其中,a为0~1之间的数。一阶滤波相当于是将新的采样值与上次的滤波结果计算一个加权平均值。a的取值决定了算法的灵敏度,a越大,新采集的值占的权重越大,算法越灵敏,但平顺性差;相反,a越小,新采集的值占的权重越小,灵敏度差,但平顺性好。优点是对周期干扰有良好的抑制作用,适用于波动频率比较高的场合,它

《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》出版1周年

去年为廖老师的甲子而出书,时光荏苒如白驹过隙,转眼出版一周年了。这本书能有这样的品质,与廖老师的指导密不可分,尤其是在他擅长的统计学领域。巩固了统计学基础,对我深入理解当前最热门的生成模型(如VAE、扩散模型)起到了至关重要的作用。 最让我感动的是,最初他给我指出问题,我不认为我有问题,我认为是他不懂,他坚持不懈地找我讨论。我作为老师我做不到,如果学生觉得自己什么都知道,我肯定就不理他了。感谢廖

RSSI滤波方法

文章目录 一、均值滤波二、递推平均滤波三、中位值滤波四、狄克逊检验法滤波五、高斯滤波六、速度滤波七、卡尔曼滤波 一、均值滤波 均值滤波是指节点接收到另一节点的多个RSSI值之后,求其算式平均值,作为测试结果 R S S I ‾ = 1 n ∙ ∑ i = 1 n R S S I i \overline{RSSI} = \frac {1}{n} \bullet \sum_{i=1

CUDAPCL ROR点云滤波

文章目录 一、简介二、实现代码三、实现效果参考资料 一、简介 该方法的具体原理为输入的点云中每一个点设定一个范围(半径为r的圆),如果在该范围内没有达到某一个设定的点数值,则该数据点将会被删除,重复上述此过程直到最后一个数据点,即完成该滤波过程。 二、实现代码 ROR.cuh #ifndef ROR_GPU_CUH#define ROR_GPU_CU

matlab频域滤波

步骤: (1)计算原图像f(x,y)的DFT, (2) 讲频谱的零频点移动到频谱图的中心位置; (3)计算滤波器函数H(U,V)与F(U,V)的乘积G(U,V); (4)讲频谱G(U,V)的零频点移回到频谱图的坐上角。 (5)计算(4)的结果的傅立叶反变换g(x,y); (6)取g(x,y)的实部作为最终的滤波后的结果图像。   代码: 大家别激动的啦   代