本文主要是介绍LLM:函数调用(Function Calling),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1 函数调用
虽然大模型能解决很多问题,但大模型并不能知晓一切。比如,大模型不知道最新消息(GPT-3.5 的知识截至 2021年9月,GPT-4 是 2023 年12月)。另外,大模型没有“真逻辑”。它表现出的逻辑、推理,是训练文本的统计规律,而不是真正的逻辑,所以有幻觉。所以大模型需要连接真实世界,并对接真逻辑系统。这就需要用到“函数调用”。
函数调用(Function Calling)可以使LLM具有与外部API交互的能力。让用户能够使用高效的外部工具、与外部API进行交互。其使用机制如下:
关于function calling,有以下几点需要注意:
- 在最新版本的OpenAI API中,可以使用
tools
参数对函数进行描述。并让大模型智能地选择输出包含函数参数的JSON对象来调用一个或多个函数。 - 最新的GPT模型(
gpt-3.5-turbo-0125
andgpt-4-turbo-preview
)可以自动检测何时应该调用函数(还有一个相关的参数tool_choice
,一般不用自己设置),还可以输出更加符合函数签名的JSON串。 - GPT不负责调用和执行外部函数,需要用户自己完成。
2 使用GPT进行函数调用
在使用GPT模型进行函数调用时,需要用到tools
参数进行函数声明,关于该参数有以下几点需要说明:
- 该参数可以接收一系列JSON组成的array,一个函数对应一个JSON,当前最多可以接受128个函数。
- JSON串的结构如下:
其中parameters
参数的写法要遵循JSON Schema格式,具体可以参考:https://blog.csdn.net/yeshang_lady/article/details/137146295
2.1 使用函数调用完成加法计算
from openai import OpenAI
from dotenv import load_dotenv,find_dotenv
import json
from math import *_=load_dotenv(find_dotenv())
client=OpenAI()def get_completion(messages,model="gpt-3.5-turbo"):response=client.chat.completions.create(model=model,messages=messages,temperature=0.7,tools=[{"type":"function","function":{"name":"sum","description":"加法器,计算一组数的和","parameters":{"type":"object","properties":{"numbers":{"type":"array","items":{"type":"number"}}}}}}],)return response.choices[0].messageprompt="计算这些数据的和:345,2313,89,632."
messages=[{"role":"system","content":"你是一个数学家"},{"role":"user","content":prompt}
]
response=get_completion(messages)
print(response)
#GPT模型第一次的回复中有关于函数调用信息,包括GPT生成的函数调用的参数,所以这些信息需要返回给GPT模型。
messages.append(response)
if response.tool_calls is not None:tool_call=response.tool_calls[0]if tool_call.function.name=="sum":args=json.loads(tool_call.function.arguments)result=sum(args["numbers"])messages.append({"tool_call_id":tool_call.id,"role":"tool","name":"sum","content":str(result)})print("=====GPT回复=====")print(get_completion(messages).content)
这篇关于LLM:函数调用(Function Calling)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!