使用Python分析股价波动周期

2024-03-31 18:48

本文主要是介绍使用Python分析股价波动周期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本思路是获取股价收盘信息后,使用希尔伯特黄变换将股价波动数据拆解为不同周期的波动曲线。再本别利用频谱分析计算每一个曲线的频率。目标是将股价波动数据拆解为不同周期波动的叠加态。

1.获取收盘价

富途有很好的API接口,给我这种小散送了每个月的使用次数也够了。

富途openAPI官网

2.希尔伯特黄变换

利用pyhht包,官方的文档磕磕绊绊看懂。

 

合起来

import pyhht
from pyhht.visualization import plot_imfs
import numpy as np
import random
from futu import *
import pandas as pd
import sys
import re
def likaiHHT_savefig_imfs(filepath,xlabel,title,signal, imfs, time_samples=None, fignum=None):if time_samples is None:time_samples = np.arange(signal.shape[0])n_imfs = imfs.shape[0]plt.figure(num=fignum)axis_extent = max(np.max(np.abs(imfs[:-1, :]), axis=0))# Plot original signalax = plt.subplot(n_imfs + 1, 1, 1)ax.plot(time_samples, signal)ax.axis([time_samples[0], time_samples[-1], signal.min(), signal.max()])ax.tick_params(which='both', left=True, bottom=False, labelleft=True,labelbottom=False)ax.grid(False)ax.set_ylabel('signal')ax.set_title(title)# Plot the IMFsfor i in range(n_imfs - 1):print(i + 2)ax = plt.subplot(n_imfs + 1, 1, i + 2)ax.plot(time_samples, imfs[i, :])ax.axis([time_samples[0], time_samples[-1], -axis_extent, axis_extent])ax.tick_params(which='both', left=True, bottom=False, labelleft=True,labelbottom=False)ax.grid(False)ax.set_ylabel('imf' + str(i + 1))# Plot the residueax = plt.subplot(n_imfs + 1, 1, n_imfs + 1)ax.plot(time_samples, imfs[-1, :], 'r')ax.axis('auto')#ax.tick_params(which='both', left=False, bottom=False, labelleft=False,labelbottom=False)ax.grid(False)ax.set_ylabel('res.')ax.set_xlabel(xlabel)plt.savefig(filepath)return 
def imfs_max_freq(imfs,sample_rate,fft_size):
#计算每一个imfs频谱中最高的那个频率n_imfs=imfs.shape[0]max_freq=[]for i in range(n_imfs-1):xs=imfs[i,:][:fft_size]xf=np.fft.rfft(xs)/fft_sizefreqs=np.linspace(0,sample_rate/2,fft_size//2+1)xfp=20*np.log10(np.clip(np.abs(xf), 1e-20, 1e100))max_freq.append(freqs[np.argmax(xfp)])return max_freq
def HHTstock(stockid,begindate,enddate):closelist=[]quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111)  # 创建行情对象ret, data, page_req_key = quote_ctx.request_history_kline(stockid, start=begindate, end=enddate, max_count=5)  # 每页5个,请求第一页if ret == RET_OK:#print(data)#print(data['code'][0])    # 取第一条的股票代码#print(data['close'].values.tolist())   # 第一页收盘价转为listcloselist=data['close'].values.tolist()else:print('error:', data)while page_req_key != None:  # 请求后面的所有结果#print('*************************************')ret, data, page_req_key = quote_ctx.request_history_kline(stockid, start=begindate, end=enddate, max_count=5, page_req_key=page_req_key) # 请求翻页后的数据if ret == RET_OK:#print(data)closelist.extend(data['close'].values.tolist())else:print('error:', data)print('All pages are finished!')quote_ctx.close() # 关闭对象,防止连接条数用尽trading_day_num=len(closelist)t=np.linspace(0,trading_day_num,trading_day_num)np_close=np.array(closelist)decomposer=pyhht.EMD(np_close)imfs=decomposer.decompose()#plot_imfs(np_close,imfs,t)likaiHHT_savefig_imfs('./'+stockid+'.png','t/day',stockid,np_close,imfs,t)ls=imfs_max_freq(imfs,1,1000)#算每一段曲线的频率print(ls)return;
def main():HHTstock('HK.01816','2012-9-11','2020-9-18')
if __name__ == '__main__':main()

计算结果

 

这篇关于使用Python分析股价波动周期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865051

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有