Spark Master资源调度--SparkContext向所有master注册

2024-03-31 13:58

本文主要是介绍Spark Master资源调度--SparkContext向所有master注册,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark Master资源调度–SparkContext向所有master注册

更多资源

  • github: https://github.com/opensourceteams/spark-scala-maven
  • csdn(汇总视频在线看): https://blog.csdn.net/thinktothings/article/details/84726769

Youtube视频分享

  • Spark Master资源调度–SparkContext向所有master注册 : https://youtu.be/AXxCnCc5Mh0​

Bilibili视频分享

  • Spark Master资源调度–SparkContext向所有master注册 : https://www.bilibili.com/video/av37442295/
width="800" height="500" src="//player.bilibili.com/player.html?aid=37442295&page=1" scrolling="no" border="0" allowfullscreen="true">

SparkContext启动向master发送消息

  • ClientEndpoint向master发送消息: RegisterApplication
    /***  Register with all masters asynchronously and returns an array `Future`s for cancellation.*/private def tryRegisterAllMasters(): Array[JFuture[_]] = {for (masterAddress <- masterRpcAddresses) yield {registerMasterThreadPool.submit(new Runnable {override def run(): Unit = try {if (registered.get) {return}logInfo("Connecting to master " + masterAddress.toSparkURL + "...")val masterRef =rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)masterRef.send(RegisterApplication(appDescription, self))} catch {case ie: InterruptedException => // Cancelledcase NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)}})}}

master处理消息RegisterApplication

  • 创建 Application 并注册到master上
  • Application 保存到 master 存储引擎中
  • 向driver发送已注册成功消息: RegisteredApplication
    case RegisterApplication(description, driver) => {// TODO Prevent repeated registrations from some driverif (state == RecoveryState.STANDBY) {// ignore, don't send response} else {logInfo("Registering app " + description.name)val app = createApplication(description, driver)registerApplication(app)logInfo("Registered app " + description.name + " with ID " + app.id)persistenceEngine.addApplication(app)driver.send(RegisteredApplication(app.id, self))schedule()}}
  • 过滤所有已注册的Worker(状态为ALIVE)
  • 遍历 waitingDrivers,如果有等待中的Drivers,给worker发送启动Driver消息: LaunchDriver
  • 调用在worker上启动executor方法
 /*** Schedule the currently available resources among waiting apps. This method will be called* every time a new app joins or resource availability changes.*/private def schedule(): Unit = {if (state != RecoveryState.ALIVE) {return}// Drivers take strict precedence over executorsval shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE))val numWorkersAlive = shuffledAliveWorkers.sizevar curPos = 0for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers// We assign workers to each waiting driver in a round-robin fashion. For each driver, we// start from the last worker that was assigned a driver, and continue onwards until we have// explored all alive workers.var launched = falsevar numWorkersVisited = 0while (numWorkersVisited < numWorkersAlive && !launched) {val worker = shuffledAliveWorkers(curPos)numWorkersVisited += 1if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {launchDriver(worker, driver)waitingDrivers -= driverlaunched = true}curPos = (curPos + 1) % numWorkersAlive}}startExecutorsOnWorkers()}
  • 过滤waitingApps,刚才注册的Application已经在ArrayBuffer中
  • 对已注册的worker进行过滤
  • 过滤条件状态为ALIVE,可用cpu内核数大于等于每个executor的内核数,可用内存大于等于Application在每个executor需要的内存数
  • 对可用worker进行排序(按可用内核数从大到小排序)
  • 调用方法 scheduleExecutorsOnWorkers,worker给executor分配多少个cpu内核
/*** Schedule and launch executors on workers*/private def startExecutorsOnWorkers(): Unit = {// Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app// in the queue, then the second app, etc.for (app <- waitingApps if app.coresLeft > 0) {val coresPerExecutor: Option[Int] = app.desc.coresPerExecutor// Filter out workers that don't have enough resources to launch an executorval usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE).filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&worker.coresFree >= coresPerExecutor.getOrElse(1)).sortBy(_.coresFree).reverseval assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)// Now that we've decided how many cores to allocate on each worker, let's allocate themfor (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {allocateWorkerResourceToExecutors(app, assignedCores(pos), coresPerExecutor, usableWorkers(pos))}}}
  • 进行具体的当前Application在Worker上给executor分配几个cpu内核
 /*** Schedule executors to be launched on the workers.* Returns an array containing number of cores assigned to each worker.** There are two modes of launching executors. The first attempts to spread out an application's* executors on as many workers as possible, while the second does the opposite (i.e. launch them* on as few workers as possible). The former is usually better for data locality purposes and is* the default.** The number of cores assigned to each executor is configurable. When this is explicitly set,* multiple executors from the same application may be launched on the same worker if the worker* has enough cores and memory. Otherwise, each executor grabs all the cores available on the* worker by default, in which case only one executor may be launched on each worker.** It is important to allocate coresPerExecutor on each worker at a time (instead of 1 core* at a time). Consider the following example: cluster has 4 workers with 16 cores each.* User requests 3 executors (spark.cores.max = 48, spark.executor.cores = 16). If 1 core is* allocated at a time, 12 cores from each worker would be assigned to each executor.* Since 12 < 16, no executors would launch [SPARK-8881].*/private def scheduleExecutorsOnWorkers(app: ApplicationInfo,usableWorkers: Array[WorkerInfo],spreadOutApps: Boolean): Array[Int] = {val coresPerExecutor = app.desc.coresPerExecutorval minCoresPerExecutor = coresPerExecutor.getOrElse(1)val oneExecutorPerWorker = coresPerExecutor.isEmptyval memoryPerExecutor = app.desc.memoryPerExecutorMBval numUsable = usableWorkers.lengthval assignedCores = new Array[Int](numUsable) // Number of cores to give to each workerval assignedExecutors = new Array[Int](numUsable) // Number of new executors on each workervar coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)/** Return whether the specified worker can launch an executor for this app. */def canLaunchExecutor(pos: Int): Boolean = {val keepScheduling = coresToAssign >= minCoresPerExecutorval enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor// If we allow multiple executors per worker, then we can always launch new executors.// Otherwise, if there is already an executor on this worker, just give it more cores.val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0if (launchingNewExecutor) {val assignedMemory = assignedExecutors(pos) * memoryPerExecutorval enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutorval underLimit = assignedExecutors.sum + app.executors.size < app.executorLimitkeepScheduling && enoughCores && enoughMemory && underLimit} else {// We're adding cores to an existing executor, so no need// to check memory and executor limitskeepScheduling && enoughCores}}// Keep launching executors until no more workers can accommodate any// more executors, or if we have reached this application's limitsvar freeWorkers = (0 until numUsable).filter(canLaunchExecutor)while (freeWorkers.nonEmpty) {freeWorkers.foreach { pos =>var keepScheduling = truewhile (keepScheduling && canLaunchExecutor(pos)) {coresToAssign -= minCoresPerExecutorassignedCores(pos) += minCoresPerExecutor// If we are launching one executor per worker, then every iteration assigns 1 core// to the executor. Otherwise, every iteration assigns cores to a new executor.if (oneExecutorPerWorker) {assignedExecutors(pos) = 1} else {assignedExecutors(pos) += 1}// Spreading out an application means spreading out its executors across as// many workers as possible. If we are not spreading out, then we should keep// scheduling executors on this worker until we use all of its resources.// Otherwise, just move on to the next worker.if (spreadOutApps) {keepScheduling = false}}}freeWorkers = freeWorkers.filter(canLaunchExecutor)}assignedCores}
  • 分配worker资源给executor
  • 给worker发送启动executor消息: LaunchExecutor
  • 给driver发送Executor已增加消息:ExecutorAdded
/*** Allocate a worker's resources to one or more executors.* @param app the info of the application which the executors belong to* @param assignedCores number of cores on this worker for this application* @param coresPerExecutor number of cores per executor* @param worker the worker info*/private def allocateWorkerResourceToExecutors(app: ApplicationInfo,assignedCores: Int,coresPerExecutor: Option[Int],worker: WorkerInfo): Unit = {// If the number of cores per executor is specified, we divide the cores assigned// to this worker evenly among the executors with no remainder.// Otherwise, we launch a single executor that grabs all the assignedCores on this worker.val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)val coresToAssign = coresPerExecutor.getOrElse(assignedCores)for (i <- 1 to numExecutors) {val exec = app.addExecutor(worker, coresToAssign)launchExecutor(worker, exec)app.state = ApplicationState.RUNNING}}

这篇关于Spark Master资源调度--SparkContext向所有master注册的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864499

相关文章

Rust中的Drop特性之解读自动化资源清理的魔法

《Rust中的Drop特性之解读自动化资源清理的魔法》Rust通过Drop特性实现了自动清理机制,确保资源在对象超出作用域时自动释放,避免了手动管理资源时可能出现的内存泄漏或双重释放问题,智能指针如B... 目录自动清理机制:Rust 的析构函数提前释放资源:std::mem::drop android的妙

springboot的调度服务与异步服务使用详解

《springboot的调度服务与异步服务使用详解》本文主要介绍了Java的ScheduledExecutorService接口和SpringBoot中如何使用调度线程池,包括核心参数、创建方式、自定... 目录1.调度服务1.1.JDK之ScheduledExecutorService1.2.spring

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也