EMD关于信号的重建,心率提取

2024-03-31 06:12
文章标签 提取 信号 emd 重建 心率

本文主要是介绍EMD关于信号的重建,心率提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于EMD的俩个假设:

IMF 有两个假设条件:

  • 在整个数据段内,极值点的个数和过零点的个数必须相等或相差最多不能超过一 个;
  • 在任意时刻,由局部极大值点形成的上包络线和由局部极小值点形成的下包络线 的平均值为零,即上、下包络线相对于时间轴局部对称。

先安装pyEMD库 

from pyEMD import EMD  (报错)
执行pip uninstall pyEMD
pip install EMD-signal==1.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

代码部分:

from PyEMD import EMD
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
from scipy import signal#读取信号数据
def readtxt(path):with open(path,'r') as f:str=f.readline()list = str.split(' ')list1=[];for i,x in enumerate(list):if ((i%5 == 0) or (i%5 == 1) or (i%5 == 2)) and x !='':list1.append(float(x))return list1def pyem(lis):emd = EMD()IMFs = emd.emd(np.array(lis))print(len(IMFs), len(IMFs[0]), type(IMFs))#计算周期和频率imfs = emd.imfs# 估计瞬时频率和周期freqs = []periods = []for imf in imfs:if len(imf) > 1:# 计算频率sample_rate = 1 / (imf.argmax() / len(imf))freq = sample_rate / len(imf)print(freq)freqs.append(freq)# 计算周期period = 1 / freqprint(period)periods.append(period)fig = plt.figure()ax = fig.add_subplot(len(IMFs) + 1, 1, 1)ax.plot(np.array(lis))for i in range(len(IMFs)):ax = fig.add_subplot(len(IMFs) + 1, 1, i + 2)ax.plot(IMFs[i])plt.show()lr = 0for i,s in enumerate(IMFs):if i>len(IMFs-1)/2+1:lr +=sreturn lr#获取心率
def findPeaks(list):# x = electrocardiogram()[2000:4000]# jus=[1,2,3,4,10,1,2,3,4,21,1,2,2,3]#获取列表最小值,然后减去最小值# list_N = list[20000:30000]list_N = listavg = sum(list_N)/len(list_N);list_D=[]for i in range(len(list_N)):list_D.append(list_N[i]-avg)#列表转换数组y=np.array(list_D)#消除趋势线z=signal.detrend(y)#结果抽取200点,降频,然后再获取数据的脉率pl=200;fs=len(list_N)#参照值比BP = fs/pl;#进行趋势拟合x=signal.resample(z,pl)#获取最小值作为条件限制hu=min(x)peaks, _ = find_peaks(x, height=hu)# print(peaks)# 实际的心率值# print(len(peaks))##获取相邻俩个峰值之间的点数,然后计算心率值for i,d in enumerate(peaks):  #打印查看脉搏波的数值print(peaks[i])a1 = peaks[0]a2 = peaks[1]a3= a2-a1#计算每个脉搏对应的点数R_point = a3*BP#以60为节点计算的数值rate=60*(500/R_point)# print("bass",bass)#总的点数除以每一个脉搏对应的点数,然后除以90秒对应的值# rate = (len(list)/R_point)/1.5plt.plot(x)plt.plot(peaks, x[peaks], "x")plt.plot(np.zeros_like(x), "--", color="gray")plt.show()return rateif __name__ == "__main__":path = "../362a7e1de4dd484a9b4a3274a0e5a633_1648249928320.txt" #正常# path = "../a7c9bff53f2e4a70af7a9f641552507a_1706541122_1706564288403_887_1.txt"  #异常ll = readtxt(path)imf = pyem(ll[2000:10000])plt.plot(imf)plt.show()print(findPeaks(imf))

运行结果:

这是IMFS的分解图9个,从低频一直到高频

 因为最后一个是趋势项,我们将IMF[5]、IMF[6]、IMF[7]进行叠加,这几本接近我们的目标信号

然后对目标信号进行峰值提取:

总结:

信号分量的处理

通过经验模态分解(EMD)得到了信号的分量,可以进行许多不同的分析和处理操作,以下是一些常见的对分量的利用方向:

(1)信号重构:将分解得到的各个本征模态函数(IMF)相加,可以重构原始信号。这可以用于验证分解的效果,或者用于信号的重建和恢复。

(2)去噪:对于复杂的信号,可能存在噪声或干扰成分。通过分析各个IMF的频率和振幅,可以识别和去除信号中的噪声成分。

(3)频率分析:分析每个IMF的频率成分,可以帮助理解信号在不同频率上的振荡特性,从而揭示信号的频域特征。

(4)特征提取:每个IMF代表了信号的局部特征和振荡模式,可以用于提取信号的特征,并进一步应用于机器学习或模式识别任务中。

(5)信号预测:通过对分解得到的各个IMF进行分析,可以探索信号的未来趋势和发展模式,从而用于信号的预测和预测建模。

(6)模式识别:分析每个IMF的时域和频域特征,可以帮助对信号进行模式识别和分类,用于识别信号中的不同模式和特征。

(7)异常检测:通过分析每个IMF的振幅和频率特征,可以用于探测信号中的异常或突发事件,从而用于异常检测和故障诊断。

在得到了信号的分量之后,可以根据具体的应用需求选择合适的分析和处理方法,以实现对信号的深入理解、特征提取和应用。

这篇关于EMD关于信号的重建,心率提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/863603

相关文章

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

无线路由器哪个品牌好用信号强? 口碑最好的三个路由器大比拼

《无线路由器哪个品牌好用信号强?口碑最好的三个路由器大比拼》不同品牌在信号覆盖、稳定性和易用性等方面各有特色,如何在众多选择中找到最适合自己的那款无线路由器呢?今天推荐三款路由器让你的网速起飞... 今天我们来聊聊那些让网速飞起来的路由器。在这个信息爆炸的时代,一个好路由器简直就是家庭网编程络的心脏。无论你

电脑显示hdmi无信号怎么办? 电脑显示器无信号的终极解决指南

《电脑显示hdmi无信号怎么办?电脑显示器无信号的终极解决指南》HDMI无信号的问题却让人头疼不已,遇到这种情况该怎么办?针对这种情况,我们可以采取一系列步骤来逐一排查并解决问题,以下是详细的方法... 无论你是试图为笔记本电脑设置多个显示器还是使用外部显示器,都可能会弹出“无HDMI信号”错误。此消息可能

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript