计算机视觉之三维重建(5)---双目立体视觉

2024-03-31 03:52

本文主要是介绍计算机视觉之三维重建(5)---双目立体视觉,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、平行视图
    • 1.1 示意图
    • 1.2 平行视图的基础矩阵
    • 1.3 平行视图的极几何
    • 1.4 平行视图的三角测量
  • 二、图像校正
  • 三、对应点问题
    • 3.1 相关匹配法
    • 3.2 归一化相关匹配法
    • 3.3 窗口问题
    • 3.4 相关法存在的问题
    • 3.5 约束问题


一、平行视图

1.1 示意图

 如下图即是一个平行视图。特点:(1) 两个平面平行。 (2) 基线平行于图像平面,极点 e e e e ′ e' e 位于无穷远处。

在这里插入图片描述

1.2 平行视图的基础矩阵

 1. 对于基础矩阵我们有另一个表达式: F = e ′ × K ′ R K − 1 F=e'×K'RK^{−1} F=e×KRK1,推导过程如下所示。

在这里插入图片描述

 2. 在平行视图情况下,极点交于无穷远处,所以我们可以假定极点 e ′ = [ 1 , 0 , 0 ] T e'=[1,0,0]^T e=[1,0,0]T,平行视图下, K = K ′ K=K' K=K R = I R=I R=I,那么对于平行视图有:

在这里插入图片描述

1.3 平行视图的极几何

 1. 极线是水平的,平行于 u u u 轴。

 2. 平行视图下, p p p p ′ p' p v v v 轴方向坐标相同,即垂直方向没有变换。

 3. 极点位于无穷远处。

 4. 已知 p p p F F F 的情况下, p ′ p' p 只需要按着扫描线寻找即可,扫描线指的是过 p p p 且平行于 u u u 轴的线。

在这里插入图片描述

在这里插入图片描述

1.4 平行视图的三角测量

 1. 俯视这个平行视图,两个摄像机平面就会变成线。 P P P O 1 O_1 O1 O 2 O_2 O2 的距离表示为深度 z z z O 1 O_1 O1 O 2 O_2 O2 的距离为 B B B,焦距为 f f f。利用相似三角形底比高可得视差与深度 z z z 成反比。

在这里插入图片描述

在这里插入图片描述

 2. (1) 平行视图中的视差图:根据两台平行摄像机在不同角度观察同一物体或场景时,由于视角差异造成的图像的差异进而推断出物体的深度和距离,得到一幅信息图,可以用于对物体或场景的三维重建和识别。 (2) 3D电影通过用两个摄像头同时模拟拍摄同一场景,模拟人眼双眼视觉,再将两个平行视图分别投影到屏幕上,由于使用特殊的偏振式眼睛,通过人眼的立体视觉原理,会给观众感知到一种立体的深度效果。

在这里插入图片描述

在这里插入图片描述

二、图像校正

 1. 图像校正:使一组非平行视图通过校正构建成平行视图。

 2. 图像校正有五步:
 (1) 在两幅图像 l l l l ′ l' l 上找到一组匹配点 p i ↔ p i ′ p_i↔p'_i pipi,不少于 8 8 8 个。

 (2) 计算基础矩阵 F F F(八点法),求解两幅图像中的极点 e e e e ′ e' e
在这里插入图片描述

 (3) 选择透视变换 H ′ H' H e ′ e' e 映射到无穷远点 ( f , 0 , 0 ) (f,0,0) (f,0,0),变换公式: H = T − 1 G R T H=T^{-1}GRT H=T1GRT
 ① 先将图像的中心点从左下角移到中心。② 构造 R R R。③ 构造 G G G

在这里插入图片描述

 (4) 对透视变换矩阵 H H H 进行变换,使得经过 H H H H ′ H' H 变换后的两个像平面满足平行视图要求: Σ d ( H p i , H ′ p i ′ ) Σd(Hp_i,H'p_i') Σd(Hpi,Hpi)

 (5) 分别利用新的矩阵 H H H H ′ H' H,对左右两幅图像 l l l l ′ l' l 进行重采样,得到一组平行视图。

在这里插入图片描述

三、对应点问题

 对应点搜索问题,即根据 p p p 点寻找对应 p ′ p' p 点的问题,我们根据平行视图极几何关系可知, p ′ p' p 点一定在扫描线上,这样可以进一步缩小的检索范围。

3.1 相关匹配法

 通过点与点之间 3 ∗ 3 3*3 33 窗口的相关性来进行判断。作为相关性标准,该方法可行依据在于,一般情况下一个图像上像素颜色或灰度的变化是平滑的,这样近似相同点平方的最大值的和在理论上大于高偏差点平方的最大值的和。

在这里插入图片描述

3.2 归一化相关匹配法

 1. 对于一个图像上存在像素颜色或灰度变化突变的情况,上一种方法会出现计算误差较大,所以需要进行归一化。

 2. 归一化相关匹配法:改变原来的相似性度量,通过每个窗口向窗口均值进行归一化,达到平滑的效果。

在这里插入图片描述

在这里插入图片描述

3.3 窗口问题

 对于较小的窗口:会引入更多的噪声,更容易受到噪声影响,但反之也会在没有噪声影响的地方提供更精确的信息。对于较大的窗口:通过归一化操作可以平滑更多的噪声,但也会丢失一部分细节。

在这里插入图片描述

3.4 相关法存在的问题

 1. 透视缩短和遮挡问题:

在这里插入图片描述

 2. 当遇到不规则物体在视角上存在遮挡时,可能由于 B / z B/z B/z 的过大,两个像平面无法得到更多的信息交互,导致信息丢失,所以可以适当减小 B / z B/z B/z。但当 B / z B/z B/z 过小时,由于双目视觉上遮挡的信息只能尽量的去弱化,不能去消除,所以当 B / z B/z B/z 过小时,物体的突出部会造成过大的深度误差,从而在三维重建过程中存在视觉上的明显错误。

在这里插入图片描述

 3. 同质区域:由于存在世界坐标下不同区域但颜色非常相近的地方,所以会导致误差的产生,比如用双目视觉去测量一堵白墙的形状,但光影极其不明显。

在这里插入图片描述

 4. 对于世界实物上存在重复的区域,这会对双目视觉的三维重建产生较大的影响。

在这里插入图片描述

3.5 约束问题

 1. 唯一性约束:对于一张图像中的任何点,在另一张图像上最多只有一个匹配点,不存在同质区域和重复区域。

在这里插入图片描述

 2. 顺序约束/单调性约束:左右视图中的对应点次序一致,保证不存在遮挡。

在这里插入图片描述

 3. 平滑性约束:视差函数通常是平滑的,减少曝光亮度突变的问题。

在这里插入图片描述

这篇关于计算机视觉之三维重建(5)---双目立体视觉的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/863335

相关文章

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频)

这是什么系统? 资源获取方式在最下方 java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频) 停车管理信息系统是为了提升停车场的运营效率和管理水平而设计的综合性平台。系统涵盖用户信息管理、车位管理、收费管理、违规车辆处理等多个功能模块,旨在实现对停车场资源的高效配置和实时监控。此外,系统还提供了资讯管理和统计查询功能,帮助管理者及时发布信息并进行数据分析,为停车场的科学

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

参会邀请 | 第二届机器视觉、图像处理与影像技术国际会议(MVIPIT 2024)

第二届机器视觉、图像处理与影像技术国际会议(MVIPIT 2024)将于2024年9月13日-15日在中国张家口召开。 MVIPIT 2024聚焦机器视觉、图像处理与影像技术,旨在为专家、学者和研究人员提供一个国际平台,分享研究成果,讨论问题和挑战,探索前沿技术。诚邀高校、科研院所、企业等有关方面的专家学者参加会议。 9月13日(周五):签到日 9月14日(周六):会议日 9月15日(周日

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

Python计算机视觉编程 第十章

目录 一、OpenCv基础知识 1.读取和写入图像 2.颜色空间 3.显示图像和结果 二、处理视频 1.输入视频 2.将视频读取到NumPy数组中 三、跟踪 1.光流 2.Lucas-Kanade算法 一、OpenCv基础知识 OpenCV 自带读取、写入图像函数以及矩阵操作和数学库。 1.读取和写入图像 import cv2# 读取图像im = c

2025届计算机毕业设计:如何构建Java SpringBoot+Vue个人健康档案管理系统?

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 | SpringBoot/SSM Python实战项目 | Django 微信小程序/安卓实战项目 大数据实战项目 ⚡⚡文末获取源码 文章目录