A^X mod P(简单数论 + 思维打表)

2024-03-30 14:08
文章标签 简单 mod 思维 打表 数论

本文主要是介绍A^X mod P(简单数论 + 思维打表),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.题目链接:

A^X mod P

二.题目大意:

给出 T,n, A, K,a, b, m, P.

1 \leq n\leq 10^{6}

0 \leq A, K, a, b \leq 10^{9}

1 \leq m, P \leq 10^{9}

T 组样例.

 f(x) = \left\{\begin{matrix}1\;\;\;x=1 & & & & & & & & \\(a \times f(x - 1) + b)\;(mod\;\;m)\;\;\;x > 1 & & & & & & & & \end{matrix}\right.

求 A^{f(1)}+A^{f(2)}+....+A^{f(n)} \;\;(mod\;\;p).

三.分析:

由于 1 \leq m \leq 10^{9}

所以 1 \leq f(x) \leq 10^{9}

如果用快速幂求和的话会 TLE.

因为 A^{f(x)} = A^{a\times 10^{5} + b}

所以只需要求 sum1[] 和 sum2[].

sum1[i]:A^{i}\;\;(mod\;\;p)

sum2[i]:A^{10^{5}i}\;\;(mod\;\;p)

所以 A^{f(x)} = sum1[i \;mod\;M] \times sum2[i\;/\;M]

详见代码.

四.代码实现:

#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define PI acos(-1.0)
#define ll long long int
using namespace std;const int M = (int)1e5;
ll n, A, K, a, b, m, p;
ll sum1[M + 5];
ll sum2[M + 5];void init()
{sum1[0] = sum2[0] = 1;for(int i = 1; i <= M; ++i)sum1[i] = sum1[i - 1] * A % p;sum2[1] = sum1[M];for(int i = 1; i <= M / 10; ++i)sum2[i] = sum2[i - 1] * sum2[1] % p;
}ll f()
{ll fx = K;ll sum = 0;for(ll i = 1; i <= n; ++i){sum = (sum1[fx % M] * sum2[fx / M] % p + sum) % p;fx = (a * fx + b) % m;}return sum % p;
}int main()
{int T;scanf("%d", &T);for(int ca = 1; ca <= T; ++ca){cin >> n >> A >> K >> a >> b >> m >> p;init();ll ans = f();printf("Case #%d: %lld\n", ca, ans);}return 0;
}

 

这篇关于A^X mod P(简单数论 + 思维打表)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861692

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 10130 简单背包

题意: 背包和 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>

数论ZOJ 2562

题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数。 性质一:一个反素数的质因子必然是从2开始连续的质数。 性质二:p=2^t1*3^t2*5^t3*7