[算法入门]分块入门之求最大值

2024-03-30 12:48

本文主要是介绍[算法入门]分块入门之求最大值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分块入门之求最大值

分块,优美的暴力

Description

Input

第一行给出一个数字N,接下来N+1行,每行给出一个数字Ai,(1<=i<=N<=1E5)
接来给出一个数字Q(Q<=7000),代表有Q个询问
每组询问格式为a,b即询问从输入的第a个数到第b个数,其中的最大值是多少

Output

如题所述

Sample Input

10
0
1
2
3
2
3
4
3
2
1
0
5
0 10
2 4
3 7
7 9
8 8

Sample Output

4
3
4
3
2


第一眼看很容易想到用暴力循环枚举区间的最值,但当n极大时,暴力直接原地爆炸。而分块就可以用空间换时间达到时空平衡。

可以把这想象成一个班级,一天老师问从编号i~j的同学中最高的是哪个,老师可以挨着一个个问做比较,但当班级里的人数很大的时候,老师肯定会累死。而分块就相当于班级里的小组,对于不是处于完整的小组,老师挨个问就可以;对于完整的小组,老师就只想要问小组长——分块维护的状态,就可以快速得到答案。

分块的一些基础

  • 块数:一般取q=sqrt(n),表示一个块(小组)有多少个元素(成员)。
  • 整块:完整的块(小组),如一个块有10个元素,那么这10个你都能进查询行操作。
  • 残块:不完整的块,一个块本来有10个元素,而你能进行查询操作的只有<10个
    有了块的基本概念后,还需要了解块的id与元素id直接的转换方法
    对于a[i],它所对应的块的下标就是(i-1)/sqrt(n)+1,可以用一个数组to[i]=(i-1)/q+1来存下,表示a[i]对应的块的编号就是to[i]
    对于第i个块,它所对应的最左下标就是(i-1)*q+1,所对应的最右下标为min(n,tu[l]*q),注意,因为最右边的块是有可能为残块,如果直接访问最右边会出界,所以要跟n求min。
  • 上面的公式可以自己堆一遍并拿几个数测试下加强记忆

能进行这些操作后,就可以着手解决这道题了。

输入和预处理

cin>>n>>m;//n,元素个数,m,访问个数
n++;//题目数据下标是从0开始,一般从1开始好操作
q=sqrt(n);
for(int i=1;i<=n;i++){cin>>a[i];to[i]=(i-1)/q+1;//预处理第i个元素对应的块的下标//c[i]表示第i个块最大的值(状态)c[tu[i]]=max(a[i],c[tu[i]]);//提前预处理出第i个块的最大值
}

输入查询操作

for(int i=1;i<=m;i++){int l,r;scanf("%d %d",&l,&r);l++;//题目数据下标是从0开始,但代码处理时是从1开始r++;find(l,r);
}

对于查询区间[x,y]中最值可以直接查询区间里块的最值再做比较,但x和y不一定能刚好圈住完整的块,在左和有有可能出现残块,残块就只能暴力循环比较。
所以将分成3个循环来求

先求最左边的残块

int ans=-1//存储答案
for(int i=l;i<=min(r,tu[l]*q);i++){//从l到l所在块的最右端ans=max(ans,a[i]);
}

再求中间的完整块

for(int i=to[l]+1;i<=to[r]-1;i++){//l所在块已经求过,所以要加+1ans=max(ans,c[i]);//c[i]是输入时直接预处理好了的第i个块最内最大的值
}

求右边的残块
注意:因为r和l有可能在同一个块里面,如果不加些判断会重复计算

if(to[r]!=to[l]){for(int i=(to[r]-1)*q+1;i<=r;i++){ans=max(ans,a[i]);}		
}

最后奉上代码

#include<bits/stdc++.h>
using namespace std;
inline int read(){int x=1,w=0;char ch=0;while(!isdigit(ch)){w|=ch=='-',ch=getchar();}while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^48),ch=getchar();return w?-x:x;
}
inline void write(int x){if(x<0)putchar('-'),x-=x;if(x>9)write(x/10);putchar(x%10+'0');return ;
}
int n,m,a[100005],c[1005],q,tu[100005];
void chunk(int l,int r){int ans=0;for(int i=l;i<=min(r,tu[l]*q);i++){ans=max(ans,a[i]);}for(int i=tu[l]+1;i<=tu[r]-1;i++){ans=max(ans,c[i]);}if(tu[r]!=tu[l]){for(int i=(tu[r]-1)*q+1;i<=r;i++){ans=max(ans,a[i]);}		}printf("%d\n",ans);return ;
}
int main(){scanf("%d",&n);n++;q=sqrt(n);for(int i=1;i<=n;i++){scanf("%d",&a[i]);tu[i]=(i-1)/q+1;c[tu[i]]=max(c[tu[i]],a[i]);}scanf("%d",&m);for(int i=1;i<=m;i++){int x,y;scanf("%d %d",&x,&y);x++;y++;chunk(x,y);}return 0;
}

这篇关于[算法入门]分块入门之求最大值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861527

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin