代码随想录训练营Day37:● 738.单调递增的数字 ● 968.监控二叉树 ● 总结

本文主要是介绍代码随想录训练营Day37:● 738.单调递增的数字 ● 968.监控二叉树 ● 总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

738.单调递增的数字

题目链接

https://leetcode.cn/problems/monotone-increasing-digits/description/

题目描述

在这里插入图片描述

思路

在这里插入图片描述

从后往前遍历数字的每一位,如果前一位大于后一位,则将其减一,后边的一位取 i-9 中最大的

在这里插入图片描述
解答的两点疑惑: 1、用flag记录而不是直接将当前值赋为 9; 2、flag 赋初值为 字符串长度 而不是 0

1、如果数字为 1000,而不符合条件的是从 10 才开始,就会将 1变为 9 ,所以最后的结果是 900 ,而正确答案应该是 999

2、如果 flag 赋初值为 0 ,数字为 1234 , 说明没有进第一个 for 循环,这时候取执行第二个 for 循环的话,会将所有的数字变为 9 ,结果是不对的

public int monotoneIncreasingDigits(int n) {String[] strings = (n + "").split("");int start = strings.length;//从后往前遍历字符串for (int i = strings.length - 1; i > 0; i--) {if (Integer.parseInt(strings[i]) < Integer.parseInt(strings[i - 1])) {//当前位置比前一个小,将当前位置 减一,并记录当前位置strings[i - 1] = (Integer.parseInt(strings[i - 1]) - 1) + "";start = i;}}//从 start 开始,均赋值为 9for (int i = start; i < strings.length; i++) {strings[i] = "9";}return Integer.parseInt(String.join("",strings));}

还有一个比较省时的方法:方法1中创建了String数组,多次使用Integer.parseInt了方法,这导致不管是耗时还是空间占用都非常高,用时12ms,下面提供一个版本在char数组上原地修改,用时1ms的版本

将基本数据型态转换成 String 的 static 方法 ,也就是 String.valueOf()

class Solution {public int monotoneIncreasingDigits(int n) {//将基本数据型态转换成 String 的 static 方法 ,也就是 String.valueOf() String s = String.valueOf(n);char[] chars = s.toCharArray();int start = s.length();for (int i = s.length() - 2; i >= 0; i--) {if (chars[i] > chars[i + 1]) {chars[i]--;start = i+1;}}for (int i = start; i < s.length(); i++) {chars[i] = '9';}return Integer.parseInt(String.valueOf(chars));}
}

968.监控二叉树

题目链接

https://leetcode.cn/problems/binary-tree-cameras/description/

题目描述

在这里插入图片描述

思路

直接跳过了。。。。。

class Solution {int  res=0;public int minCameraCover(TreeNode root) {// 对根节点的状态做检验,防止根节点是无覆盖状态 .if(minCame(root)==0){res++;}return res;}/**节点的状态值:0 表示无覆盖1 表示 有摄像头2 表示有覆盖后序遍历,根据左右节点的情况,来判读 自己的状态*/public int minCame(TreeNode root){if(root==null){// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头return 2;}int left=minCame(root.left);int  right=minCame(root.right);// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头if(left==2&&right==2){//(2,2)return 0;}else if(left==0||right==0){// 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头// (0,0) (0,1) (0,2) (1,0) (2,0)// 状态值为 1 摄像头数 ++;res++;return 1;}else{// 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,// 那么本节点就是处于被覆盖状态return 2;}}
}

总结

贪心总结

这篇关于代码随想录训练营Day37:● 738.单调递增的数字 ● 968.监控二叉树 ● 总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860309

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的