nn.LayerNorm的参数说明

2024-03-29 20:04
文章标签 参数 说明 nn layernorm

本文主要是介绍nn.LayerNorm的参数说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch库中的torch.nn.LayerNorm模块,它是一种在自然语言处理中广泛应用的正规化技术。LayerNorm通过对输入数据进行归一化处理,可以提高模型的鲁棒性和泛化能力。具体体现如下两个方面:

1、将数据归一化至同一量级,解决数据间的可比性问题,如果量级不一样,那么网络可能解读错误。

2、归一化之后,寻求最优解的过程会变得平缓,可以更快的收敛到最优解

函数原型:

torch.nn.LayerNorm(normalized_shape: Union[int, List[int], torch.Size],eps: float = 1e-05,elementwise_affine: bool = True)

第一个参数:normalized_shape
如果传入整数,比如5,则被看做只有一个整数的list,此时LayerNorm会对输入的最后一维进行归一化,这个int值需要和输入的最后一维一样大。

假设此时输入的数据维度是[3, 5],则对3个长度为5的向量求均值方差,得到3个均值和3个方差,分别对这3行进行归一化(每一行的5个数字都是均值为0,方差为1);LayerNorm中的weight和bias也分别包含5个数字,重复使用3次,对每一行进行仿射变换(仿射变换即乘以weight中对应的数字后,然后加bias中对应的数字),并会在反向传播时得到学习。


如果输入的是个list或者torch.Size,比如[3, 5]或torch.Size([3, 5]),则会对网络最后的两维进行归一化,且要求输入数据的最后两维尺寸也是[3, 5]。

假设此时输入的数据维度也是[3, 5],首先对这15个数字求均值和方差,然后归一化这个15个数字;weight和bias也分别包含15个数字,分别对15个归一化后的数字进行仿射变换(仿射变换即乘以weight中对应的数字后,然后加bias中对应的数字),并会在反向传播时得到学习。


假设此时输入的数据维度是[N, 3, 5],则对这N个[3,5]做上述一样的操作,只是此时做仿射变换时,weight和bias被重复用了N次。


假设此时输入的数据维度是[N, T, 3, 5],也是一样的,维度可以更多。
注意:显然LayerNorm中weight和bias的shape就是传入的normalized_shape。

第二个参数:eps

归一化时加在分母上防止除零

第三个参数:elementwise_affine

如果设为False,则LayerNorm层不含有任何可学习参数。

如果设为True(默认是True)则会包含可学习参数weight和bias,用于仿射变换,即对输入数据归一化到均值0方差1后,乘以weight,即bias。

import torch
import torch.nn as nn# 创建输入数据
input_data = torch.randn(4, 6)
print(input_data)
print(input_data.size())# 创建LayerNorm层
#对最后一个维度进行归一化
layer_norm1 = nn.LayerNorm(6)
#对两个维度同时归一化
layer_norm2 = nn.LayerNorm([4,6])# 进行LayerNorm处理
output1 = layer_norm1(input_data)
output2 = layer_norm2(input_data)print(output1)
print(output2)输出:
tensor([[ 1.4415,  0.1733, -1.2644, -2.7267, -0.0138, -0.0792],[ 2.0240,  0.8238, -0.4269, -0.2043, -1.8146,  0.5594],[ 1.2774, -0.7218,  0.3526,  1.6711,  0.0966,  0.4277],[ 0.7997,  0.1011,  0.5100,  0.7205, -0.5538, -0.2981]])
torch.Size([4, 6])tensor([[ 1.4260,  0.4501, -0.6563, -1.7816,  0.3061,  0.2558],[ 1.5704,  0.5591, -0.4948, -0.3072, -1.6640,  0.3363],[ 0.9737, -1.5872, -0.2109,  1.4780, -0.5389, -0.1147],[ 1.1532, -0.2205,  0.5835,  0.9975, -1.5082, -1.0055]],grad_fn=<NativeLayerNormBackward>)tensor([[ 1.2579,  0.0510, -1.3174, -2.7092, -0.1271, -0.1894],[ 1.8123,  0.6701, -0.5204, -0.3085, -1.8410,  0.4184],[ 1.1018, -0.8010,  0.2216,  1.4765, -0.0221,  0.2930],[ 0.6471, -0.0178,  0.3713,  0.5717, -0.6411, -0.3977]],grad_fn=<NativeLayerNormBackward>)

这篇关于nn.LayerNorm的参数说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859508

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

MySQL 临时表创建与使用详细说明

《MySQL临时表创建与使用详细说明》MySQL临时表是存储在内存或磁盘的临时数据表,会话结束时自动销毁,适合存储中间计算结果或临时数据集,其名称以#开头(如#TempTable),本文给大家介绍M... 目录mysql 临时表详细说明1.定义2.核心特性3.创建与使用4.典型应用场景5.生命周期管理6.注

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于