308. 区域和检索 - 数组可修改——从具体案例中讲解线段树的构造、更新

2024-03-29 19:08

本文主要是介绍308. 区域和检索 - 数组可修改——从具体案例中讲解线段树的构造、更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给你一个数组 nums ,请你完成两类查询。

  1. 其中一类查询要求 更新 数组 nums 下标对应的值
  2. 另一类查询要求返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的 ,其中 left <= right

实现 NumArray 类:

  • NumArray(int[] nums) 用整数数组 nums 初始化对象
  • void update(int index, int val)nums[index] 的值 更新val
  • int sumRange(int left, int right) 返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的 (即,nums[left] + nums[left + 1], ..., nums[right]

首先是线段树的构建如图所示:

步骤1:将原数组中的元素排列到新数组的后半部分

        for(int i = size, j = 0; i < 2 * size; ++i, ++j){tree[i] = nums[j];}

请添加图片描述

步骤2:两两计算父节点的值,由序号 / 2决定是否父节点相同
例如:6 / 2 == 7 / 2,所以元素2和元素4属于同一个父节点(新增的元素6)
下方虽然有三个图,但其实都属于同一个循环中的代码

        for(int i = size - 1; i > 0; --i){  //tree[0]不使用tree[i] = tree[i * 2] + tree[i * 2 + 1];}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

接下来是线段树的更新:

同样采用从最底层进行更新,例如我们把样例中的元素8改为元素10
在这里插入图片描述

如图所示,对元素8及其父节点的值都进行了更新。
但是我们会面临2个问题:

  1. 如何对元素8进行更新

    元素8其实很容易更新,因为样例中会告诉我们8在原数组中所在的位置index以及我们可以计算出原数组长度size,本样例中,8的序号为10 = index(4,从零开始) + size(6)。

  2. 如何对父节点进行更新

    线段树很容易看出是一个类完全二叉树,即子节点与父节点之间存在倍数关系(n,2n,2n+1)。

    那么我们只需要对序号不断的除以2,可能遍历所有父节点,采用右移更加快速。

    此处其实还有一个小分叉口,我看到许多方法是tree[n] = tree[n * 2] + tree[n * 2 + 1]才更新父节点的值,但我觉得算出更新元素的差值,然后让父节点们与差值进行相加更快一点。

    void update(int index, int val) {int n = index + size;int diff = val - tree[n];tree[n] = val;//不断更新父节点while(n >> 1 > 0){n >>= 1;tree[n] += diff;}}

最后是算出范围内的元素总和

我们已经构建好线段树了,那么只需要找到各个所在子树中最高的节点进行相加即可。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6Q49VrcQ-1645526743869)(https://secure2.wostatic.cn/static/j6L8zy4D5Be8hafnCUp2tk/image.png)]

例如在图示中求[1,4]的和,即4+5+7+8。我们找到各个所在子树中最高的节点,在此处是4+12+8。

即同时包含左右孩子节点的时候,去找他们父节点。

那么算法是怎么进行的呢?

我们可以发现,只有最左端和最右端可能存在他们的父节点只有一个孩子的情况。

            //如果左序号%2 == 1说明只包含该部分子树的右节点//那么就不能通过父节点来计算和,只能直接加该节点的和if(left % 2 == 1){sum += tree[left];left++; //上面已经将该部分子树唯一的节点已经加上了,直接右移看右半边的子树}//如果右序号%2 == 0说明只包含该部分子树的左节点//同理只能直接加该节点的和if(right % 2 == 0){sum += tree[right];right--;    //同理直接看左半边子树}

先将单节点的值加入总和,然后左节点向右移动、右节点向左移动(分情况而定)

这样可以在不疏忽单节点的情况下保证接下来在[left, right]之间是两两配对的

            left >>= 1;right >>= 1;

然后进入他们的父节点重复上述操作,最后就能得到各个所在子树中最高的节点的和了

最后附上全部的代码:

class NumArray {
public:vector<int> tree;int size;   //nums有n个元素,那么树的节点应该有2n - 1个//线段树的构造//线段树是完全二叉树NumArray(vector<int>& nums) {size = nums.size();tree.resize(2 * size);//先处理最后一层for(int i = size, j = 0; i < 2 * size; ++i, ++j){tree[i] = nums[j];}//然后慢慢更新父节点//可以参考完全二叉树的构建中父节点与子节点的关系,第222题for(int i = size - 1; i > 0; --i){  //tree[0]不使用tree[i] = tree[i * 2] + tree[i * 2 + 1];}}//更新值void update(int index, int val) {int n = index + size;int diff = val - tree[n];tree[n] = val;//不断更新父节点while(n >> 1 > 0){n >>= 1;tree[n] += diff;}}//返回总和int sumRange(int left, int right) {int sum = 0;left += size;right += size;while(left <= right){//如果左序号%2 == 1说明只包含该部分子树的右节点//那么就不能通过父节点来计算和,只能直接加该节点的和if(left % 2 == 1){sum += tree[left];left++; //上面已经将该部分子树唯一的节点已经加上了,直接右移看右半边的子树}//如果右序号%2 == 0说明只包含该部分子树的左节点//同理只能直接加该节点的和if(right % 2 == 0){sum += tree[right];right--;    //同理直接看左半边子树}left >>= 1;right >>= 1;}return sum;}
};

这篇关于308. 区域和检索 - 数组可修改——从具体案例中讲解线段树的构造、更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859393

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ