本文主要是介绍大数据导论-大数据可视化——沐雨先生,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
【实验目的】
掌握Pthon/R语言进行大数据可视化的方法。掌握点图、线图、面图的绘制方法及常用命令,熟练绘制饼图、柱状图、直方图和箱线图。
【实验内容】
使用Python或R语言,利用iris和mpg数据集完成大数据可视化任务
Python导入iris数据集方法
from sklearn.datasets import load_iris
iris=load_iris()
attributes=iris.data #获取属性数据
#获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target=iris.target
labels=iris.feature_names#获取类别名字
print(labels)
print(attributes)
print(target)
R语言导入iris数据集
data("iris")
summary(iris)
1、利用iris数据集,绘制点图,横纵坐标分别为花萼的长度、花萼的宽度,点的颜色对应不同的莺尾花类型。注意添加横纵坐标的标签、图的标题。
- 源程序
from sklearn.datasets import load_irisimport matplotlib.pyplot as plt
from sklearn.cluster import KMeansiris = load_iris()
attributes = iris.data # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target # y
labels = iris.feature_names # 获取类别名字# 样式美化
plt.style.use('seaborn')x = attributes[:, 0:2]
y = targetx0 = attributes[y == 0]
x1 = attributes[y == 1]
x2 = attributes[y == 2]# 为预测结果上色并可视化
plt.scatter(x0[:, 0], x0[:, 1], s=50, c="turquoise", marker='o', label='label0', cmap='viridis')
plt.scatter(x1[:, 0], x1[:, 1], s=50, c="lightcoral", marker='o', label='label1', cmap='viridis')
plt.scatter(x2[:, 0], x2[:, 1], s=50, c="cornflowerblue", marker='o', label='label2', cmap='viridis')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.title('isir_data')
plt.legend(loc=2)
plt.show()
2、随机产生80个服从均值为0、方差为10的正态分布的点,并绘制这80个点。注意添加横纵坐标的标签、图的标题。
- 源代码
import numpy as npimport matplotlib.pyplot as plt
from pylab import mpl# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = FalseN = 80
x = range(N)
# 随机生成服从正态分布的随机数
y = np.random.normal(loc=0.0, scale=100, size=N)
y.sort()print(x, y)
plt.scatter(x, y, color='indianred',s=10)
plt.xlabel('点', fontsize=15)
plt.ylabel('值', fontsize=15)
plt.title('{}个服从均值为0,方差为10的正态分布——点图'.format(N), fontsize=10)
plt.show()
3、在题目2的基础上将80个点用线连接在一起,并将线型修改为虚线。
- 源代码
import numpy as npimport matplotlib.pyplot as plt
from pylab import mpl# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = FalseN = 80
x = range(N)
# 随机生成服从正态分布的随机数
y = np.random.normal(loc=0.0, scale=100, size=N)
y.sort()print(x, y)
plt.plot(x, y, color='indianred', linestyle='--')
plt.xlabel('点', fontsize=15)
plt.ylabel('值', fontsize=15)
plt.title('{}个服从均值为0,方差为10的正态分布——折线图'.format(N), fontsize=10)
plt.show()
4、利用mpg数据集,将cty映射到x轴,hwy映射到y轴,并画散点图
- 源代码
from plotnine.data import mpg
import matplotlib.pyplot as pltx = mpg['cyl'].tolist()
y = mpg['hwy'].tolist()plt.scatter(x, y, s=100, c='indianred', marker='.')
plt.xlabel('cty', fontsize=15)
plt.ylabel('hwy', fontsize=15)
plt.title('cty——>hwy', fontsize=20)
plt.show()
这篇关于大数据导论-大数据可视化——沐雨先生的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!