PTA 列出连通集 思路分析及代码解析

2024-03-29 14:38

本文主要是介绍PTA 列出连通集 思路分析及代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PTA 7-6 列出连通集 思路分析及代码解析v1.0

  • 一、前导
    • 1. 需要掌握的知识
    • 2. 题目信息
  • 二、解题思路分析
    • 1. 题意理解
    • 2. 思路分析(重点)
  • 三、具体实现
    • 1. 弯路和bug
    • 2. 代码框架(重点)
      • 2.1 采用的数据结构
      • 2.2 程序主体框架
      • 2.3 各分支函数
    • 3. 完整编码
  • 四、参考

一、前导

1. 需要掌握的知识

图的存储和遍历、树的层序遍历、堆栈和队列

2. 题目信息

题目来源:PTA / 拼题A
题目地址:https://pintia.cn/problem-sets/15/problems/714

二、解题思路分析

1. 题意理解

基础题,存储图并通过深度优先和广度优先分别进行遍历

  1. 输入数据
8 6	\\ 8代表图的顶点数;6代表图的边数,下面6行表示边
0 7
0 1
2 0
4 1
2 4
3 5
  1. 输出数据
{ 0 1 4 2 7 } \\先进行DFS、再进行BFS,按指定格式{ x y z }即可输出
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
  1. 题意
    先存储图,然后遍历图中的元素

2. 思路分析(重点)

  1. 可以考虑用二维数组或链表来存储图。使用二维数组的话,编码比较容易。后面有时间的话,我会再通过链表存储试试
  2. 顶点从0到 N-1编号

三、具体实现

1. 弯路和bug

  1. DFS后,注意将结点初始化为未访问状态

2. 代码框架(重点)

2.1 采用的数据结构

#define max 10
int a[max][max]; //为提高解题速度,通过二维数组存储数据 且 二维数组a为全局变量
bool visited[max];	//visited[]数组用来标记元素是否已访问

2.2 程序主体框架

               程序伪码描述
int main()
{	1.创建图并完成元素的存储;2.dfs();3.bfs();
}

2.3 各分支函数

  1. void creat(); 创建图并完成元素存储;对于无向图,边需要存储两次
void creat()
{cin>>N>>E; //顶点数和边数for(int i=0;i<N;i++) //创建一个空图{for(int j=0;j<N;j++)a[i][j]=0;visited[i]=false; 	}int x,y;for(int k=0;k<E;k++) //录入边{cin>>x>>y;a[x][y]=1;a[y][x]=1;}
}
  1. bool isEdge(int start,int end); 判定两个结点间是否有边
bool isEdge(int start,int end)
{if(a[start][end]) return true;else return false;
}
  1. void dfs(int node); 深度优先遍历的递归实现:代码简洁易懂
void dfs(int node) //deep first search
{visited[node]=true;cout<<node<<" ";for(int i=0;i<N;i++){if(isEdge(node,i) && !visited[i])dfs1(i); }return;
}
  1. void dfs(int node); 方法二,通过堆栈实现DFS
void dfs(int node) //deep first search 
{visited[node]=true;s.push(node); //stack<int> s; cout<<node<<' ';front=s.top();int i;while(!s.empty()){for(i=0;i<N;i++){if(isEdge[front][i] && !visited[i]){visited[i]=true;s.push(i);cout<<i<<' ';front=s.top();break;}}if(i==N) // i==N,意味着找不到邻接点了,这条深度优先路径走到头了{s.pop();if(s.empty()) return; front=s.top(); }}return;
}
  1. void bfs(int node); 参照树的层序遍历,通过队列实现BFS:一层层的收入元素,按照先进先出的顺序弹出
void bfs(int node) //breadth first search
{visited[node]=true;q.push(node); //q equal queuewhile(!q.empty()){front=q.front();q.pop();cout<<front<<" ";for(int i=0;i<N;i++){if(isEdge[front][i] && !visited[i]){visited[i]=true; q.push(i);}}	}return;
}

3. 完整编码

#include <stack>
#include <queue>
#include <iostream>
using namespace std;#define max 10
int a[max][max];
bool visited[max];int N,E;queue<int> q;
stack<int> s;void creat(); 
void bfs(int node);
void dfs(int node);
bool isEdge(int start,int end);int main()
{creat();for(int i=0;i<N;i++)if(!visited[i]){cout<<"{ "; dfs(i); cout<<"}"<<endl;}for(int i=0;i<N;i++) { visited[i]=false; }for(int i=0;i<N;i++){if(!visited[i]) {cout<<"{ "; bfs(i);cout<<"}"<<endl;}	}return 0;
}void dfs(int node) //deep first search
{visited[node]=true;cout<<node<<" ";for(int i=0;i<N;i++){if(isEdge(node,i) && !visited[i])dfs(i); }return;
}bool isEdge(int start,int end)
{if(a[start][end]) return true;else return false;
}void creat()
{cin>>N>>E;for(int i=0;i<N;i++){for(int j=0;j<N;j++)a[i][j]=0;visited[i]=false; 	}int x,y;for(int k=0;k<E;k++){cin>>x>>y;a[x][y]=1;a[y][x]=1;}
}void bfs(int node) //breadth first search
{int front;visited[node]=true;q.push(node);while(!q.empty()){front=q.front();q.pop();cout<<front<<" ";for(int i=0;i<N;i++){if(isEdge(front,i) && !visited[i]){visited[i]=true; q.push(i);}}	}return;
}

2021.10.19 :应试流解法

#include <queue>
#include <iostream>
using namespace std;#define MAX 10
int a[MAX][MAX] = { 0 };
int checked[MAX] = { 0 };
int N, M;void DFS(int Start);
void BFS(int Start);int main()
{cin >> N>>M;int x, y;for (int i = 0; i < M; i++){cin >> x >> y;a[x][y] = 1;a[y][x] = 1;}for (int i = 0; i < N; i++){if (!checked[i]){cout << "{";DFS(i);cout << " }" << endl;}}for (int i = 0; i < N; i++)checked[i] = false;for (int i = 0; i < N; i++){if (!checked[i]){cout << "{";BFS(i);cout << " }" << endl;}}return 0;
}void DFS(int Start)
{checked[Start] = true;cout << " " << Start;for (int i = 0; i < N; i++)if (a[Start][i] && !checked[i])DFS(i);return;
}void BFS(int Start)
{queue<int> q; int Front;q.push(Start); checked[Start] = true;while (!q.empty()){Front = q.front();q.pop();cout << " " << Front;for (int i = 0; i < N; i++){if (a[Front][i] && !checked[i]){q.push(i);checked[i] = true;}}						}return;
}

四、参考

  1. 浙江大学 陈越、何钦铭老师主讲的数据结构

这篇关于PTA 列出连通集 思路分析及代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858857

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav