算法设计与分析:世界名画陈列馆问题(可重复监视) (回溯法 分支限界法)

本文主要是介绍算法设计与分析:世界名画陈列馆问题(可重复监视) (回溯法 分支限界法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

世界名画陈列馆问题

Description:

 世界名画陈列馆由m´n个排列成矩形阵列的陈列室组成。为了防止名画被盗,需要在陈列室中设置警卫机器人哨位。每个警卫机器人除了监视它所在的陈列室外,还可以监视与它所在的陈列室相邻的上、下、左、右个陈列室。试设计一个安排警卫机器人哨位的算法,

使得名画陈列馆中每一个陈列室都在警卫机器人的监视之下,且所用的警卫机器人数最少。

设计一个优先队列式分支限界法,计算警卫机器人的最佳哨位安排,使得名画陈列馆中每一个陈列室都在警卫机器人的监视之下,且所用的警卫机器人数最少。

Input:

第一行有2 个正整数m和n (1≤m,n≤20)

Output:

 将计算出的警卫机器人数及其最佳哨位安排输出。第一行是警卫机器人数;接下来的m行中每行n个数,0 表示无哨位,1 表示哨位。

Sample Input:

4 4
Copy

Sample Output:

4
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

!!!在各大OJ都提交了,均为超时,不是AC代码。仅作为学习参考。!!!

当y[i][j+1]==1时,以q为根的子树的解,不优于以p为根的子树的解,

当y[i][j+1]==1且y[i][j+2]==1时,以r为根的子树的解,不优于以p为根的子树的解。

搜索时应按照p、q、r或p、r、q的顺序来扩展结点。

剪枝策略:

  1. 放置的机器人个数不会超过n*m/3+1个(按每个机器人仅辐射左右或上下考虑,堆叠这样的小长条可得)。以n*m/3+2为初始最优值,当放置的个数超过当前最优值时,剪去。
  2. (当前最优值ans-当前已放置个数p)*5(最多能增加5个监视点)。如果小于未监视的格点数(n*m-spys),则一定达不到比当前最优值更好的情况,剪去。

 回溯法:

#include <stdio.h>
#include <string.h>
int n,m,f[5][2]={{0,0},{0,1},{0,-1},{1,0},{-1,0}}; //自己本身+上下左右 
int anx[30][30],ans; //最优结果 ans-警卫个数 anx-警卫位置 
int put[30][30],p; //暂时存储 p-警卫个数 put-警卫位置 
int spy[30][30],spys; //spy-被监视的展柜位置 spys-被监视的展柜个数 void puta(int x,int y,int p,int q);
void search(int i,int j)
{if(p>=ans) return;while(i<=n&&spy[i][j]) //已放置的不再被搜索{j++;if(j>m)	i++,j=1; //换行 }if(i>n) //更新答案{ans=p;memcpy(anx, put, sizeof(put)); //把put内容复制给anx return;}//剪枝if((ans-p)*5<=n*m-spys) return;if(i<n) puta(i+1,j,i,j);if(spy[i][j+1]==0) puta(i,j,i,j);if(j<m&&(spy[i][j+1]==0||spy[i][j+2]==0)) puta(i,j+1,i,j);
}void puta(int x,int y,int c,int d)
{put[x][y]=1;p++;for(int i=0;i<5;i++){int xx=x+f[i][0];int yy=y+f[i][1];spy[xx][yy]++;if(spy[xx][yy]==1) spys++;}search(c,d+1);put[x][y] = 0;p--;for(int i=0;i<5;i++){int xx=x+f[i][0];int yy=y+f[i][1];spy[xx][yy]--;if(spy[xx][yy]==0) spys--;}
}int main()
{scanf("%d%d",&n,&m);ans=n*m/3+2;p=0;//设置边界 for(int i=0;i<=n+1;i++)spy[i][0]=spy[i][m+1]=1;for(int i=0;i<=m+1;i++)spy[0][i]=spy[n+1][i]=1;search(1,1);printf("%d\n",ans);for(int i=1;i<=n;i++){for(int j=1;j<=m;j++)printf("%d ",anx[i][j]);printf("\n");}		
}

分支限界法:

#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
int n,m,f[5][2]={{0,0},{0,1},{0,-1},{1,0},{-1,0}}; //自己本身+上下左右 
int anx[30][30],ans; //最优结果 ans-警卫个数 anx-警卫位置 struct Node{int pu[30][30];//pu-警卫位置 int spy[30][30]; //spy-被监视的展柜位置int i,j,k,t; //(i,j)为当前坐标 k-警卫数 t-被监视的展柜个数 
};struct cmp //重写比较函数
{bool operator() (Node a, Node b){return a.t > b.t; //小顶堆}
};
//priority_queue<Node> q; //优先队列 
priority_queue<Node, vector<Node>, cmp> q;
Node init(Node node)
{memset(node.pu,0,sizeof(node.pu)); memset(node.spy,0,sizeof(node.spy)); node.i=1;node.j=1;node.k=0;node.t=0;for(int i=0;i<=n+1;i++)node.spy[i][0]=node.spy[i][m+1]=1;for(int i=0;i<=m+1;i++)node.spy[0][i]=node.spy[n+1][i]=1;return node;
}
void puta(Node p,int x,int y)
{Node node;node=init(node);node.i=p.i;node.j=p.j;node.k=p.k+1;node.t=p.t;memcpy(node.pu, p.pu, sizeof(p.pu));memcpy(node.spy, p.spy, sizeof(p.spy));node.pu[x][y]=1;for(int d=0;d<5;d++){int xx=x+f[d][0];int yy=y+f[d][1];node.spy[xx][yy]++;if(node.spy[xx][yy]==1) {node.t++;}}while(node.i<=n&&node.spy[node.i][node.j]) //已放置的不再被搜索{node.j++;if(node.j>m)node.i++,node.j=1; //换行 }q.push(node);return;
}
int main()
{scanf("%d%d",&n,&m);ans=n*m/3+2;Node node;node=init(node);q.push(node);while(!q.empty())//队列非空 {Node p=q.top();q.pop();if(p.t>=n*m){if(p.k<ans){ans=p.k;memcpy(anx, p.pu, sizeof(p.pu)); //把put内容复制给anx }	}else{if(p.i<n) puta(p,p.i+1,p.j);if((p.i==n&&p.j==m)||p.spy[p.i][p.j+1]==0) puta(p,p.i,p.j);if(p.j<m&&(p.spy[p.i][p.j+1]==0||p.spy[p.i][p.j+2]==0)) puta(p,p.i,p.j+1);}}printf("%d\n",ans);for(int i=1;i<=n;i++){for(int j=1;j<=m;j++)printf("%d ",anx[i][j]);printf("\n");}	
}

 

这篇关于算法设计与分析:世界名画陈列馆问题(可重复监视) (回溯法 分支限界法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858641

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出