一次OOM分析-ByteArrayOutPutStream#write引起

2024-03-29 11:38

本文主要是介绍一次OOM分析-ByteArrayOutPutStream#write引起,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文产生的原因

上传一个大文件文件的时候报了OOM
在这里插入图片描述

查看代码

以前的上传代码中使用了

URL url = new **URL**(urlStr);
conn = (HttpURLConnection) url.openConnection();
....省略
out = conn.getOutputStream();
conn.setRequestMethod("POST");
conn.connect();
byte[] bufferOut = new byte[1024 * 1024];
int bytes = 0;while ((bytes = in.read(bufferOut)) != -1) {out.write(bufferOut, 0, bytes);}

查看源码

顺着OOM时候的堆栈,查看源码。
write的时候 PosterOutputStream作为ByteArrayOutPutStream的子类,直接使用了super.write,所以直接查看ByteArrayOutPutStream#write(byte b[], int off, int len)即可
在这里插入图片描述
write的时候,将目标数据(数组)写入到ByteArrayOutputStream#buf中,若buf不够大,则扩容至2倍。
注意:扩容时,需要3倍的内存才能成功扩容。

ByteArrayOutPutStream#write源码

public synchronized void write(byte b[], int off, int len) {if ((off < 0) || (off > b.length) || (len < 0) ||((off + len) - b.length > 0)) {throw new IndexOutOfBoundsException();}**ensureCapacity**(count + len);System.arraycopy(b, off, buf, count, len);count += len;
}private void ensureCapacity(int minCapacity) {// overflow-conscious codeif (minCapacity - buf.length > 0)grow(minCapacity);
}
private void grow(int minCapacity) {// overflow-conscious codeint oldCapacity = buf.length;int newCapacity = oldCapacity << 1;//增长为2倍if (newCapacity - minCapacity < 0)newCapacity = minCapacity;if (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);buf = Arrays.copyOf(buf, newCapacity);//新的数组最少需要旧数组两倍的内存
}

为何会使用到PosterOutputStream

getOutPutStream的时候,若不是streaming,就使用PosterOutputStream
#TODO 链接

public boolean streaming() {return this.fixedContentLength != -1 || this.fixedContentLengthLong != -1L || this.chunkLength != -1;}

在这里插入图片描述

解决方式ByteArrayOutPutStream#write引起的OOM

1.设置超大内存。按照最坏情况估计,设置为最大上传文件的3倍内存。(ps:这里仅仅考虑了扩容时的内存,需要再添加一些内存为其他数据)
2.使用conn.setFixedLengthStreamingMode或者conn.setChunkedStreamingMode,避免使用ByteArrayOutPutStream。ps:需要目标服务器支持。

本地测试

java版本:java8
启动参数:-XX:+UseConcMarkSweepGC -Xmx400m -Xms400m -Xmn30m -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:G:/学习/gclog.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=G:/学习/dump.hprof

参数说明:
-Xmx400m -Xms400m 最大堆内存 400M,最小堆内存400M, 老年代=400m-30m=370m
-Xmn30m 新生代30M 默认 SurvivorRatio 8, eden:s0:s1为8:1:1,所以新生代为9,即30m*0.9=27m
MetaspaceSize 为本地内存。 非堆。

打算上传的a.apk只有345M ,堆内存400M,老年代370M,看起来是够的

    public static void main(String[] args) throws IOException {File file = new File("G:/学习/a.apk");System.out.println(file.length()/1024/1024);FileInputStream fileInputStream = new FileInputStream(file);OutputStream out = new ByteArrayOutputStream();byte[] bytesRead = new byte[1024*1024*8];int n = 0;int times = 0;while ((n = fileInputStream.read(bytesRead)) != -1) {try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); }System.out.println(++times*8 + "m");out.write(bytesRead, 0, n);}System.out.println("----"+((ByteArrayOutputStream) out).size()/1024/1024);}

使用jmap -heap jpsid查看堆内存

在这里插入图片描述

使用JVisualVM查看堆内存增长

在这里插入图片描述
在128M 即将申请256M内存之前,先尝试回收内存。回收后
137.8M, 370-137.8=242.2M, 老年代仍小于256M ,因此OOM。
在这里插入图片描述
gc日志
gclog.log中
[ParOldGen: 253984K->141506K(378880K) 可以看出,老年代内存从248M回收到了137.8M。

2019-10-23T16:57:15.205+0800: 51.679: [Full GC (Allocation Failure) [PSYoungGen: 2312K->0K(27136K)] [ParOldGen: 253984K->141506K(378880K)] 256296K->141506K(406016K), [Metaspace: 9290K->9290K(1058816K)], 0.0327092 secs] [Times: user=0.08 sys=0.00, real=0.03 secs] 
2019-10-23T16:57:15.238+0800: 51.712: [GC (Allocation Failure) [PSYoungGen: 0K->0K(27136K)] 141506K->141506K(406016K), 0.0109249 secs] [Times: user=0.05 sys=0.00, real=0.01 secs] 
2019-10-23T16:57:15.249+0800: 51.723: [Full GC (Allocation Failure) [PSYoungGen: 0K->0K(27136K)] [ParOldGen: 141506K->141136K(378880K)] 141506K->141136K(406016K), [Metaspace: 9290K->9147K(1058816K)], 0.0228731 secs] [Times: user=0.05 sys=0.00, real=0.02 secs] 
HeapPSYoungGen      total 27136K, used 707K [0x00000000fe200000, 0x0000000100000000, 0x0000000100000000)eden space 23552K, 3% used [0x00000000fe200000,0x00000000fe2b0c38,0x00000000ff900000)from space 3584K, 0% used [0x00000000ffc80000,0x00000000ffc80000,0x0000000100000000)to   space 3584K, 0% used [0x00000000ff900000,0x00000000ff900000,0x00000000ffc80000)ParOldGen       total 378880K, used 141136K [0x00000000e7000000, 0x00000000fe200000, 0x00000000fe200000)object space 378880K, 37% used [0x00000000e7000000,0x00000000ef9d4238,0x00000000fe200000)Metaspace       used 9159K, capacity 9426K, committed 9984K, reserved 1058816Kclass space    used 1064K, capacity 1120K, committed 1280K, reserved 1048576K

相关资料

OutputStream OutOfMemoryError when sending HTTP
Understanding the Java Garbage Collection Log
URLConnection 使用流的问题

这篇关于一次OOM分析-ByteArrayOutPutStream#write引起的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858500

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

电脑多久清理一次灰尘合? 合理清理电脑上灰尘的科普文

《电脑多久清理一次灰尘合?合理清理电脑上灰尘的科普文》聊起电脑清理灰尘这个话题,我可有不少话要说,你知道吗,电脑就像个勤劳的工人,每天不停地为我们服务,但时间一长,它也会“出汗”——也就是积累灰尘,... 灰尘的堆积几乎是所有电脑用户面临的问题。无论你的房间有多干净,或者你的电脑是否安装了灰尘过滤器,灰尘都

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异