【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch)

2024-03-29 06:12

本文主要是介绍【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

 

近年来,基于卷积网络(CNN)的监督学习已经 在计算机视觉应用中得到了广泛的采用。相比之下,无监督 使用 CNN 进行学习受到的关注较少。在这项工作中,我们希望能有所帮助 缩小了 CNN 在监督学习和无监督学习方面的成功之间的差距。我们介绍一类称为深度卷积生成的 CNN 对抗性网络(DCGAN),具有一定的架构限制,以及 证明他们是无监督学习的有力候选人。训练 在各种图像数据集上,我们展示了令人信服的证据,表明我们的深度卷积对抗对学习了从对象部分到 生成器和鉴别器中的场景。此外,我们使用学到的 新任务的特征 - 证明它们作为一般图像表示的适用性。(https://arxiv.org/pdf/1511.06434.pdf)

工具

 数据集

方法实现

加载必要的库函数和自定义函数

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as Ffrom torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torchvision.utils import save_image
def get_sample_image(G, n_noise):"""save sample 100 images"""z = torch.randn(100, n_noise).to(DEVICE)y_hat = G(z).view(100, 28, 28) # (100, 28, 28)result = y_hat.cpu().data.numpy()img = np.zeros([280, 280])for j in range(10):img[j*28:(j+1)*28] = np.concatenate([x for x in result[j*10:(j+1)*10]], axis=-1)return img

定义判别模型

class Discriminator(nn.Module):"""Convolutional Discriminator for MNIST"""def __init__(self, in_channel=1, num_classes=1):super(Discriminator, self).__init__()self.conv = nn.Sequential(# 28 -> 14nn.Conv2d(in_channel, 512, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.LeakyReLU(0.2),# 14 -> 7nn.Conv2d(512, 256, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.LeakyReLU(0.2),# 7 -> 4nn.Conv2d(256, 128, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.LeakyReLU(0.2),nn.AvgPool2d(4),)self.fc = nn.Sequential(# reshape input, 128 -> 1nn.Linear(128, 1),nn.Sigmoid(),)def forward(self, x, y=None):y_ = self.conv(x)y_ = y_.view(y_.size(0), -1)y_ = self.fc(y_)return y_

定义生成模型

class Generator(nn.Module):"""Convolutional Generator for MNIST"""def __init__(self, input_size=100, num_classes=784):super(Generator, self).__init__()self.fc = nn.Sequential(nn.Linear(input_size, 4*4*512),nn.ReLU(),)self.conv = nn.Sequential(# input: 4 by 4, output: 7 by 7nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(),# input: 7 by 7, output: 14 by 14nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(),# input: 14 by 14, output: 28 by 28nn.ConvTranspose2d(128, 1, 4, stride=2, padding=1, bias=False),nn.Tanh(),)def forward(self, x, y=None):x = x.view(x.size(0), -1)y_ = self.fc(x)y_ = y_.view(y_.size(0), 512, 4, 4)y_ = self.conv(y_)return y_

 模型超参数定义配置

batch_size = 64criterion = nn.BCELoss()
D_opt = torch.optim.Adam(D.parameters(), lr=0.001, betas=(0.5, 0.999))
G_opt = torch.optim.Adam(G.parameters(), lr=0.001, betas=(0.5, 0.999))max_epoch = 30 # need more than 20 epochs for training generator
step = 0
n_critic = 1 # for training more k steps about Discriminator
n_noise = 100D_labels = torch.ones([batch_size, 1]).to(DEVICE) # Discriminator Label to real
D_fakes = torch.zeros([batch_size, 1]).to(DEVICE) # Discriminator Label to fake

 模型训练

for epoch in range(max_epoch):for idx, (images, labels) in enumerate(data_loader):# Training Discriminatorx = images.to(DEVICE)x_outputs = D(x)D_x_loss = criterion(x_outputs, D_labels)z = torch.randn(batch_size, n_noise).to(DEVICE)z_outputs = D(G(z))D_z_loss = criterion(z_outputs, D_fakes)D_loss = D_x_loss + D_z_lossD.zero_grad()D_loss.backward()D_opt.step()if step % n_critic == 0:# Training Generatorz = torch.randn(batch_size, n_noise).to(DEVICE)z_outputs = D(G(z))G_loss = criterion(z_outputs, D_labels)D.zero_grad()G.zero_grad()G_loss.backward()G_opt.step()if step % 500 == 0:print('Epoch: {}/{}, Step: {}, D Loss: {}, G Loss: {}'.format(epoch, max_epoch, step, D_loss.item(), G_loss.item()))if step % 1000 == 0:G.eval()img = get_sample_image(G, n_noise)imsave('./{}_step{}.jpg'.format(MODEL_NAME, str(step).zfill(3)), img, cmap='gray')G.train()step += 1

测试生成效果

# generation to image
G.eval()
imshow(get_sample_image(G, n_noise), cmap='gray')

 

模型和状态参量保存

def save_checkpoint(state, file_name='checkpoint.pth.tar'):torch.save(state, file_name)# Saving params.
# torch.save(D.state_dict(), 'D_c.pkl')
# torch.save(G.state_dict(), 'G_c.pkl')
save_checkpoint({'epoch': epoch + 1, 'state_dict':D.state_dict(), 'optimizer' : D_opt.state_dict()}, 'D_dc.pth.tar')
save_checkpoint({'epoch': epoch + 1, 'state_dict':G.state_dict(), 'optimizer' : G_opt.state_dict()}, 'G_dc.pth.tar')

应用

DCGAN作为一个成熟的生成模型,在自然图像,医学图像,医学电生理信号数据分析中,都可以用来实现数据的合成,达到数据增强的目的,同时,如何减少增强数据对于后端任务的不利干扰,也是一个需要关注的方面。

这篇关于【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857822

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.