FPN(特征金字塔)-pytorch实践

2024-03-28 12:32

本文主要是介绍FPN(特征金字塔)-pytorch实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.FPN

FPN来源于论文《Feature Pyramid Networks for Object Detection》

1.1要解决的问题

传统的物体检测模型通常只在深度卷积网络的最后一个特征图上进行后续操作,而这一层对应的下采样率(图像缩小的倍数)通常又比较大,如16、32,造成小物体在特征图上的有效信息较少,小物体的检测性能会急剧下降,这个问题也被称为多尺度问题。如图1所示,这样会导致小目标漏检检测,因为在下采样过程中小目标的像素较少,在下采样过程中会丢失。

 

图1 单一高层次特征

 

1.2常见解决方案

(1)经典的方法是利用图像金字塔的方式进行多尺度变化增强,使用不同尺度图片分别提取特征,如图2所示,但这样会带来极大的计算量。

图2 图片特征金字塔

 

(2)特征金字塔,使用一张图片,提取不同层次的特征,但是不同层次的特征图缺少融合。

 

(3)FPN,在(2)的基础上添加了上下层特征融合

 2.FPN网络结构

FPN主要包含自下而上网络、自上而下网络、横向连接卷积融合4个部分。

2.1自下而上

最左侧为普通的卷积网络,默认使用ResNet结构,用作提取语义信息。C1代表了ResNet的前几个卷积与池化层,而C2至C5分别为不同的ResNet卷积组,这些卷积组包含了多个Bottleneck结构,组内的特征图大小相同,组间大小递减

2.2自上而下

首先对C5进行1×1卷积降低通道数得到P5,然后依次进行上采样得到P4、P3和P2,目的是得到与C4、C3与C2长宽相同的特征,以方便下一步进行逐元素相加。这里采用2倍最邻近上采样,即直接对临近元素进行复制,而非线性插值。·

2.3横向连接

目的是为了将上采样后的高语义特征与浅层的定位细节特征进行融合。高语义特征经过上采样后,其长宽与对应的浅层特征相同,而通道数固定为256,因此需要对底层特征C2至C4进行1*1卷积使得其通道数变为256,然后两者进行逐元素相加得到P4、P3与P2。由于C1的特征图尺寸较大且语义信息不足,因此没有把C1放到横向连接中。·

2.4卷积融合

在得到相加后的特征后,利用3×3卷积对生成的P2至P4再进行融合,目的是消除上采样过程带来的重叠效应,以生成最终的特征图。对于实际的物体检测算法,需要在特征图上进行RoI提取,而FPN有4个输出的特征图,选择哪一个特征图上面的特征也是个问题。FPN给出的解决方法是,对于不同大小的RoI,使用不同的特征图,大尺度的RoI在深层的特征图上进行提取,如P5,小尺度的RoI在浅层的特征图上进行提取

3.FPN pytorch实现

3.1 Bottleneck类实现

import torch.nn as nn
import torch.nn.functional as F# ResNet基本的Bottleneck类
class Bottleneck(nn.Module):expansion = 4 #通道扩增倍数def __init__(self, in_planes, planes, stride=1, downsample=None):super(Bottleneck, self).__init__()self.bottleneck = nn.Sequential(nn.Conv2d(in_planes, planes, 1, bias=False),nn.BatchNorm2d(planes),nn.ReLU(inplace=True),nn.Conv2d(planes, planes, 3, stride, 1, bias=False),nn.BatchNorm2d(planes),nn.ReLU(inplace=True),nn.Conv2d(planes, self.expansion * planes, 1, bias=False),nn.BatchNorm2d(self.expansion * planes),)self.relu = nn.ReLU(inplace=True)self.downsample = downsampledef forward(self, x):identity = xout = self.bottleneck(x)if self.downsample is not None:identity = self.downsample(x)out += identity# shortcutout = self.relu(out)return out

3.2FPN类

class FPN(nn.Module):'''FPN需要初始化一个list,代表ResNet每一个阶段的Bottleneck的数量'''def __init__(self, layers):super(FPN, self).__init__()#构建C1self.inplanes = 64self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(3, 2, 1)#自下而上搭建C2、C3、C4、C5self.layer1 = self._make_layer(64, layers[0])self.layer2 = self._make_layer(128, layers[1], 2)self.layer3 = self._make_layer(256, layers[2], 2)self.layer4 = self._make_layer(512, layers[3], 2)#对C5减少通道,得到P5self.toplayer = nn.Conv2d(2048, 256, 1, 1, 0)#3*3卷积融合self.smooth1 = nn.Conv2d(256, 256, 3, 1, 1)self.smooth2 = nn.Conv2d(256, 256, 3, 1, 1)self.smooth3 = nn.Conv2d(256, 256, 3, 1, 1)#横向连接,保证每一层通道数一致self.latlayer1 = nn.Conv2d(1024, 256, 1, 1, 0)self.latlayer2 = nn.Conv2d( 512, 256, 1, 1, 0)self.latlayer3 = nn.Conv2d( 256, 256, 1, 1, 0)#构建C2到C5def _make_layer(self, planes, blocks, stride=1):downsample  = None#如果步长不为1,进行下采样if stride != 1 or self.inplanes != Bottleneck.expansion * planes:downsample  = nn.Sequential(nn.Conv2d(self.inplanes, Bottleneck.expansion * planes, 1, stride, bias=False),nn.BatchNorm2d(Bottleneck.expansion * planes))layers = []layers.append(Bottleneck(self.inplanes, planes, stride, downsample))#更新输入输出层self.inplanes = planes * Bottleneck.expansion#根据block数量添加bottleneck的数量for i in range(1, blocks):layers.append(Bottleneck(self.inplanes, planes))return nn.Sequential(*layers#自上而下上采样def _upsample_add(self, x, y):_,_,H,W = y.shape#逐个元素相加return F.upsample(x, size=(H,W), mode='bilinear') + ydef forward(self, x):#自下而上c1 = self.maxpool(self.relu(self.bn1(self.conv1(x))))c2 = self.layer1(c1)c3 = self.layer2(c2)c4 = self.layer3(c3)c5 = self.layer4(c4)#自上而下,横向连接p5 = self.toplayer(c5)p4 = self._upsample_add(p5, self.latlayer1(c4))p3 = self._upsample_add(p4, self.latlayer2(c3))p2 = self._upsample_add(p3, self.latlayer3(c2))#卷积融合,平滑处理p4 = self.smooth1(p4)p3 = self.smooth2(p3)p2 = self.smooth3(p2)return p2, p3, p4, p5

这篇关于FPN(特征金字塔)-pytorch实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855617

相关文章

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

9 个 GraphQL 安全最佳实践

GraphQL 已被最大的平台采用 - Facebook、Twitter、Github、Pinterest、Walmart - 这些大公司不能在安全性上妥协。但是,尽管 GraphQL 可以成为您的 API 的非常安全的选项,但它并不是开箱即用的。事实恰恰相反:即使是最新手的黑客,所有大门都是敞开的。此外,GraphQL 有自己的一套注意事项,因此如果您来自 REST,您可能会错过一些重要步骤!

AI学习指南机器学习篇-朴素贝叶斯处理连续特征和离散特征

AI学习指南机器学习篇-朴素贝叶斯处理连续特征和离散特征 在机器学习领域,朴素贝叶斯是一种常用的分类算法,它的简单性和高效性使得它在实际应用中得到了广泛的应用。然而,在使用朴素贝叶斯算法进行分类时,我们通常会面临一个重要的问题,就是如何处理连续特征和离散特征。因为朴素贝叶斯算法基于特征的条件独立性假设,所以对于不同类型的特征,我们需要采取不同的处理方式。 在本篇博客中,我们将探讨如何有效地处理

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

Netty ByteBuf 释放详解:内存管理与最佳实践

Netty ByteBuf 释放详解:内存管理与最佳实践 在Netty中(学习netty请参考:🔗深入浅出Netty:高性能网络应用框架的原理与实践),管理ByteBuf的内存是至关重要的(学习ByteBuf请参考:🔗Netty ByteBuf 详解:高性能数据缓冲区的全面介绍)。未能正确释放ByteBuf可能会导致内存泄漏,进而影响应用的性能和稳定性。本文将详细介绍如何正确地释放ByteB

Clickhouse 的性能优化实践总结

文章目录 前言性能优化的原则数据结构优化内存优化磁盘优化网络优化CPU优化查询优化数据迁移优化 前言 ClickHouse是一个性能很强的OLAP数据库,性能强是建立在专业运维之上的,需要专业运维人员依据不同的业务需求对ClickHouse进行有针对性的优化。同一批数据,在不同的业务下,查询性能可能出现两极分化。 性能优化的原则 在进行ClickHouse性能优化时,有几条

RabbitMQ实践——临时队列

临时队列是一种自动删除队列。当这个队列被创建后,如果没有消费者监听,则会一直存在,还可以不断向其发布消息。但是一旦的消费者开始监听,然后断开监听后,它就会被自动删除。 新建自动删除队列 我们创建一个名字叫queue.auto.delete的临时队列 绑定 我们直接使用默认交换器,所以不用创建新的交换器,也不用建立绑定关系。 实验 发布消息 我们在后台管理页面的默认交换器下向这个队列

国产AI算力训练大模型技术实践

&nbsp;&nbsp; ChatGPT引领AI大模型热潮,国内外模型如雨后春笋,掀起新一轮科技浪潮。然而,国内大模型研发推广亦面临不小挑战。面对机遇与挑战,我们需保持清醒,持续推进技术创新与应用落地。 为应对挑战,我们需从战略高度全面规划大模型的研发与运营,利用我们的制度优势,集中资源攻坚克难。通过加强顶层设计,统一规划,并加大政策与资源的扶持,我们必将推动中国人工智能实现从追赶者到