【智能算法】流向算法(FDA)原理及实现

2024-03-28 10:20

本文主要是介绍【智能算法】流向算法(FDA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2021年,H Karami等人受到水流运动规律启发,提出了流向算法(Flow Direction Algorithm, FDA)。

2.算法原理

2.1算法思想

FDA受到了流入排水池的水流的启发,模拟了水流朝向排水池最低高度出口的方向流动 (水往低处流~)。首先创建一个初始种群在排水池即问题的搜索空间中,然后考虑了邻近水流及其坡度对水流的影响,最后使水流流向海拔较低的位置,也就是排水池的最低海拔出口点(适应度值度量)。
在这里插入图片描述

2.2算法过程

创建水流领域

FDA 假设每个水流附近存在 β 个邻域,则第i个水流的第j个邻居位置为:
N ( j ) = F ( i ) + R N × Δ (1) N\left(j\right)=F\left(i\right)+R_{\mathbb{N}}\times\Delta \tag{1} N(j)=F(i)+RN×Δ(1)
其中,RN是均值为0,标准差为1的正态分布随机数;Δ 是用来控制算法搜索空间大小的控制参数,其值越小算法搜索范围越小,反之搜索空间越大.Δ的值从一个较大值线性减小到较小值,并朝向随机位置以增加多样性,表述为:
Δ = [ R × X r a n d − R × F ( i ) ] × ∥ X b e s t − F ( i ) ∥ × W (2) \begin{aligned}\Delta&=\bigl[R\times X_{\mathrm{rand}}-R\times F(i)\bigr]\times\left\|X_{\mathrm{best}}-F(i)\right\|\times W\end{aligned}\tag{2} Δ=[R×XrandR×F(i)]×XbestF(i)×W(2)
其中,Xrand为随机水流位置,Xbest为当代最优水流位置,W为非线性权重:
W = ( 1 − τ τ max ⁡ ) 2 × R N × ( R u × τ τ max ⁡ ) × R u (3) W=\left(1-\frac{\tau}{\tau_{\max}}\right)^{2\times R_{N}}\times\left(R_{\mathrm{u}}\times\frac{\tau}{\tau_{\max}}\right)\times R_{\mathrm{u}}\tag{3} W=(1τmaxτ)2×RN×(Ru×τmaxτ)×Ru(3)
其中,τ 和 τmax分别为当前迭代次数和最大迭代次数,Ru为均匀分布的随机向量。
更新水流位置
FDA算法中水流流向海拔最低的方向,若最优邻居N(k)的适应度fN(k)小于当前水流的适应度fF(i),则当前水流流向该邻居,此时新的水流位置为:
F n e w ( i ) = F ( i ) + v F ( i ) − N ( k ) ∥ F ( i ) − N ( k ) ∥ (4) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+v\frac{\boldsymbol{F}(i)-\boldsymbol{N}(k)}{\left\Vert\boldsymbol{F}(i)-\boldsymbol{N}(k)\right\Vert}\tag{4} Fnew(i)=F(i)+vF(i)N(k)F(i)N(k)(4)
其中,k为最优邻居的序号;v为水流速度,与坡度直接相关:
v = R N × S 0 ( i , k , D ) (5) v=R_\text{N}\times S_0(i,k,D)\tag{5} v=RN×S0(i,k,D)(5)
其中,S0(i,k,D)为最优邻居N(k)和水流F(i)位置之间的斜率为:
S 0 ( i , k , D ) = f F ( i ) − f N ( k ) ∥ F ( i , d ) − N ( k , d ) ∥ (6) S_0(i,k,D)=\frac{f_{\boldsymbol{F}(i)}-f_{\boldsymbol{N}(k)}}{\left\|F(i,d)-N(k,d)\right\|}\tag{6} S0(i,k,D)=F(i,d)N(k,d)fF(i)fN(k)(6)
如果随机水流的适应度优于当前水流的适应度,那么当前水流将沿着随机水流的方向流动。
F n e w ( i ) = F ( i ) + R N × [ F ( r ) − F ( i ) ] (7) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+R_{\mathrm{N}}\times\left[\boldsymbol{F}(r)-\boldsymbol{F}(i)\right]\tag{7} Fnew(i)=F(i)+RN×[F(r)F(i)](7)
如果当前水流的适应度优于其最优邻居的适应度,根据适应度值来决定当前水流是沿着该随机水流的方向移动,还是沿着最优水流的方向移动。
F n e w ( i ) = F ( i ) + 2 R N × [ X b e s t − F ( i ) ] (8) \boldsymbol{F}_\mathrm{new}(i)=\boldsymbol{F}(i)+2R_\mathrm{N}\times\left[\boldsymbol{X}_\mathrm{best}-\boldsymbol{F}(i)\right]\tag{8} Fnew(i)=F(i)+2RN×[XbestF(i)](8)

流程图
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Karami H, Anaraki M V, Farzin S, et al. Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems[J]. Computers & Industrial Engineering, 2021, 156: 107224.

这篇关于【智能算法】流向算法(FDA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855350

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核