【深度学习】图片预处理,分辨出模糊图片

2024-03-28 06:04

本文主要是介绍【深度学习】图片预处理,分辨出模糊图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ref:https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
论文 ref:https://www.cse.cuhk.edu.hk/leojia/all_final_papers/blur_detect_cvpr08.pdf
遇到模糊的图片,还要处理一下,把它挑出来,要么修复,要么弃用。否则影响后续效果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

根据模糊值排序即可,写在文件名中,自动排序,然后对模糊的去掉即可

import os.pathfrom imutils import paths
import argparse
import cv2
import shutildef variance_of_laplacian(image):# compute the Laplacian of the image and then return the focus# measure, which is simply the variance of the Laplacianreturn cv2.Laplacian(image, cv2.CV_64F).var()# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", default=r"D:\dataset\imgs_bk\imgs_bk",help="path to input directory of images")
ap.add_argument("-t", "--threshold", type=float, default=400.0,help="focus measures that fall below this value will be considered 'blurry'")
args = vars(ap.parse_args())
count_num = 0
for imagePath in paths.list_images(args["images"]):# load the image, convert it to grayscale, and compute the# focus measure of the image using the Variance of Laplacian# methodimage = cv2.imread(imagePath)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)fm = variance_of_laplacian(gray)text = "Not Blurry"print("res:", imagePath, fm)# if the focus measure is less than the supplied threshold,# then the image should be considered "blurry"# for threshold in [100, 200, 300, 400, 500]:# if fm < threshold:# text = "Blurry"# # show the image# cv2.putText(image, "{}: {:.2f}".format(text, fm), (10, 30),#             cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)# # cv2.imshow("Image", image)_, file_name = os.path.split(imagePath)# dst_dir = r"D:\code\baidu-spider\blur_img"# os.makedirs(dst_dir, exist_ok=True)# dst_path = os.path.join(dst_dir, str(fm) + "-" + file_name)# cv2.imwrite(dst_path, image)dst_path_blank = os.path.join(r"D:\dataset\blank-blur-order", str(fm) + '-' + file_name)shutil.copy(imagePath, dst_path_blank)count_num += 1# key = cv2.waitKey(0)

本质是一个拉普拉斯变换!!
还挺好用的。
我感觉300,400的阈值,就会好很多了。

这篇关于【深度学习】图片预处理,分辨出模糊图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854665

相关文章

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

Qt QWidget实现图片旋转动画

《QtQWidget实现图片旋转动画》这篇文章主要为大家详细介绍了如何使用了Qt和QWidget实现图片旋转动画效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、效果展示二、源码分享本例程通过QGraphicsView实现svg格式图片旋转。.hpjavascript

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用