左手医生:医疗 AI 企业的云原生提效降本之路

2024-03-28 00:52

本文主要是介绍左手医生:医疗 AI 企业的云原生提效降本之路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相信这样的经历对很多人来说并不陌生:为了能到更好的医院治病,不惜路途遥远奔波到大城市;或者只是看个小病,也得排上半天长队。这些由于医疗资源分配不均导致的就医问题已是老生长谈。

云计算、人工智能、大数据等技术的发展和融合,让医疗行业的智能诊断不再是遥不可及的事情,近年来不少科技创新企业也纷纷投入医疗健康领域,希望能用技术的手段推动优质医疗资源集中、患者需求分散等问题的缓解。

图片

左医科技就是其中之一。秉持“打造主动式 AI、让优质医疗触手可及”的理念,左医科技推出了核心产品“左手医生” App,使大众用户可以通过其解决症状自诊、小病找药、智能分诊导诊、医疗健康知识问答等健康需求。

在不久前举办的“2024 阿里云战略发布会”上,左手医生作为经典案例,诠释了云计算如何在企业及行业发展的“成本·成长·成功”方面释放价值。通过使用阿里云云原生等产品,左手医生项目的上线时间缩短了 67%。 在这个过程中,左手医生也更加直接地体会到了架构向云原生演进为业务带来的增效、降本。

医疗行业快速变化让传统架构不堪重负

左手医生的目标是通过将深度学习、大数据处理、语义理解、交互式对话等技术与医学相融合,打造智能医生驱动的数字医疗平台。目前其已能够覆盖医院 35 个科室中的 6000 多种常见病,发展为国内领先的“全科智能医生”。

过去左手医生的服务采用传统方式部署在云服务器 ECS 上,随着平台的快速发展,及对医疗大数据处理需求的增长,单体架构给业务带来的挑战日益明显:

图片

  • 稳定性风险: 用户访问量越来越大,服务难以应对高流量、高并发带来的冲击。
  • 难以支撑业务扩展: 原有架构难以满足业务快速扩展和对灵活性的需求;同时,业务对于医疗大数据的存储、分析需求日益增长,传统架构也难以支撑这些需求。
  • 故障解决效率低: 原架构下对于系统整体运行状态、服务调用链路跟踪、性能瓶颈定位等方面的监控能力较为有限,影响问题诊断和优化决策的效率。
  • 运维复杂度陡升: 随着业务拆分为多个微服务,服务间的依赖关系变得错综复杂,业务之间耦合性太强,对系统运维带来极大挑战。

云原生为医疗 AI 场景提效降本

为解决以上挑战,左手医生决定采用云原生技术重构其核心医疗服务平台,通过使用 ACK、MSE、ARMS、Kafka 等阿里云产品进行业务微服务化改造和容器化部署,将原有 ECS 上的服务迁移至容器环境,实现了服务模块化、资源弹性调度、以及更为健壮的消息传递机制。

图片

  • 容器服务 ACK: 将原有服务容器化并迁移到 ACK 集群上,实现服务的动态伸缩、滚动升级与灰度发布等功能,大大提升了资源管理和应用交付效率,同时极大减少了 K8s 运维工作。
  • 微服务引擎 MSE: 通过引入 MSE,提供了完整的微服务治理解决方案,实现服务注册发现、配置管理、限流降级等功能,增强系统的稳定性与韧性,帮助客户实现服务平滑升级。
  • 应用实时监控服务 ARMS: 集成 ARMS 以实现对分布式系统的深度监控和性能分析,如全链路追踪、实时性能监控、异常检测等功能,帮助团队快速定位问题和优化性能。
  • 消息队列 Kafka: 作为核心的消息中间件组件,用于处理业务解耦、异步处理及数据流场景,确保系统间通信高效可靠。

业务价值

通过此次架构改造,左医科技获得了以下显著收益:

1)资源利用率提升: 通过容器化部署和 ACK 的自动化运维特性,使服务器资源利用率提升了近 60%,并且大大降低 IT 运维成本。

2)敏捷交付与可扩展: 容器化的环境使得新功能上线周期从之前的天级别缩短至小时甚至分钟级别,同时轻松应对业务高峰时段的负载变化,实现了快速响应市场需求的能力,使项目上线时间整体缩短了 67%。

3)系统稳定性和可靠性增强: 借助 MSE 服务治理工具,增强了服务间的稳定性和可靠性,减少了因服务异常导致的业务中断风险。

4)业务平滑升级: 结合 MSE 微服务治理功能,如无损上下线功能,实现了业务的平滑升级。

5)运维效能增强: 一体化的监控平台 ARMS 为团队提供了全面深入的业务洞察,能够更快地定位并解决线上问题,运维效率提升 70% 左右。

6)优化数据处理能力: Kafka 和消息队列 MQ 的引入确保了数据的高效处理和传输,使消息处理的效率提升了 80% 左右。

通过与阿里云合作,左医科技的架构改造为公司带来了显著的业务价值和竞争优势。新的云原生架构不仅提高了系统的稳定性和可伸缩性,还加快了产品迭代速度,提升了运维效能,使得左医科技能够更好地适应医疗行业的快速变化和市场需求。

身处像 AI 医疗这样正处于快速发展的领域,对于市场需求变化的快速响应,即是让企业能够更早地找准赛道、抓住红利,更为推动医疗效率和大众健康水平的提升发挥重要作用。阿里云云原生产品愿与更多企业携手,用科技推动行业创新、创造社会价值。

这篇关于左手医生:医疗 AI 企业的云原生提效降本之路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853954

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek