spark-submit 主要参数详细说明及Standalone集群最佳实践

本文主要是介绍spark-submit 主要参数详细说明及Standalone集群最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 参数说明
  • 3. Standalone集群最佳实践


1. 前言

部署提交应用到 spark 集群,可能会用到 spark-submit 工具,鉴于网上的博客质量残差不齐,且有很多完全是无效且错误的配置,没有搞明白诸如--total-executor-cores--executor-cores--num-executors的关系和区别。因此有必要结合官网文档 submitting-applications 详细记录一下参数的含义。

2. 参数说明

一般的用法是:spark-submit [option] xx.jar/xx.py
详细说明如下:

Usage: spark-submit [options] <app jar | python file | R file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]Options:--master MASTER_URL         spark://host:port, mesos://host:port, yarn,k8s://https://host:port, or local (Default: local[*]).--deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") oron one of the worker machines inside the cluster ("cluster")(Default: client).--class CLASS_NAME          Your application's main class (for Java / Scala apps).--name NAME                 A name of your application.--jars JARS                 Comma-separated list of jars to include on the driverand executor classpaths.--packages                  Comma-separated list of maven coordinates of jars to includeon the driver and executor classpaths. Will search the localmaven repo, then maven central and any additional remoterepositories given by --repositories. The format for thecoordinates should be groupId:artifactId:version.--exclude-packages          Comma-separated list of groupId:artifactId, to exclude whileresolving the dependencies provided in --packages to avoiddependency conflicts.--repositories              Comma-separated list of additional remote repositories tosearch for the maven coordinates given with --packages.--py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to placeon the PYTHONPATH for Python apps.--files FILES               Comma-separated list of files to be placed in the workingdirectory of each executor. File paths of these filesin executors can be accessed via SparkFiles.get(fileName).--archives ARCHIVES         Comma-separated list of archives to be extracted into theworking directory of each executor.--conf, -c PROP=VALUE       Arbitrary Spark configuration property.--properties-file FILE      Path to a file from which to load extra properties. If notspecified, this will look for conf/spark-defaults.conf.--driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).--driver-java-options       Extra Java options to pass to the driver.--driver-library-path       Extra library path entries to pass to the driver.--driver-class-path         Extra class path entries to pass to the driver. Note thatjars added with --jars are automatically included in theclasspath.--executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).--proxy-user NAME           User to impersonate when submitting the application.This argument does not work with --principal / --keytab.--help, -h                  Show this help message and exit.--verbose, -v               Print additional debug output.--version,                  Print the version of current Spark.Spark Connect only:--remote CONNECT_URL       URL to connect to the server for Spark Connect, e.g.,sc://host:port. --master and --deploy-mode cannot be settogether with this option. This option is experimental, andmight change between minor releases.Cluster deploy mode only:--driver-cores NUM          Number of cores used by the driver, only in cluster mode(Default: 1).Spark standalone or Mesos with cluster deploy mode only:--supervise                 If given, restarts the driver on failure.Spark standalone, Mesos or K8s with cluster deploy mode only:--kill SUBMISSION_ID        If given, kills the driver specified.--status SUBMISSION_ID      If given, requests the status of the driver specified.Spark standalone and Mesos only:--total-executor-cores NUM  Total cores for all executors.Spark standalone, YARN and Kubernetes only:--executor-cores NUM        Number of cores used by each executor. (Default: 1 inYARN and K8S modes, or all available cores on the workerin standalone mode).Spark on YARN and Kubernetes only:--num-executors NUM         Number of executors to launch (Default: 2).If dynamic allocation is enabled, the initial number ofexecutors will be at least NUM.--principal PRINCIPAL       Principal to be used to login to KDC.--keytab KEYTAB             The full path to the file that contains the keytab for theprincipal specified above.Spark on YARN only:--queue QUEUE_NAME          The YARN queue to submit to (Default: "default").

我把一些主要的参数列举一下:

  • --master MASTER_URL ,其中 MASTER_URL 可选如下:
    • local,启1个work线程本地运行应用程序
    • local[K],启K个work线程本地运行应用程序
    • local[K,F],启K个work线程本地运行应用程序,且运行中最大容忍F次失败次数
    • local[*],尽可能多启动cpu逻辑线程本地运行应用程序
    • local[*,F],尽可能多启动cpu逻辑线程本地运行应用程序,且运行中最大容忍F次失败次数
    • local-cluster[N,C,M],仅用于单元测试,它在一个JVM中模拟一个分布式集群,其中有N个工作线程,每个工作线程有C个内核,每个工作进程有M MiB的内存。
    • spark://host:port,连接standalone集群的master节点,端口默认7077
    • spark://HOST1:PORT1,HOST2:PORT2,连接带有Zookeeper备份的standalone集群的master节点。该列表必须使用Zookeeper设置高可用性集群中的所有主主机,端口默认7077。
    • mesos://host:port,连接 Mesos 集群,端口默认5050
    • yarn,连接 YARN 集群,此外--deploy-mode参数决定了是client还是cluster模式
    • k8s://https://host:port 连接 K8s 集群,此外--deploy-mode参数决定了是client还是cluster模式
  • --deploy-mode 可选cluster及client。cluster:在work节点上部署driver。client:作为外部client在本地部署driver,默认是client
  • --driver-memory MEM 分配driver的内存,默认1024M
  • --executor-memory MEM 分配每个executor的内存,默认1G
  • --driver-cores NUM driver 可以使用的核数,默认1。注意仅在cluster模式下有效
  • --total-executor-cores NUM 所有的executor总共的核数。注意仅在Spark standalone 以及 Mesos下生效
  • --executor-cores NUM 每个executor可以使用的核数,默认1。注意仅在 Spark standalone, YARN以及Kubernetes下生效
  • --num-executors NUM executor启动的数量,默认2。注意仅在Spark on YARN 以及 Kubernetes下生效

3. Standalone集群最佳实践

因为Spark Standalone集群下--num-executors NUM 参数不生效,而且如果你没有用--deploy-mode=cluster,那么--driver-cores NUM 参数也是不生效的,那么一种可行的提交参数:

spark-submit 
--master spark://master:7077 
--name spark-app
--total-executor-cores={集群机器数}*{一台机器的逻辑核数-1}
--executor-cores={一台机器的逻辑核数-1}
--executor-memory={一台机器的内存-3GB}
xxx.py

例如,Spark Standalone集群有3台机器,每台机器cpu核数是16,每台机器的内存是16GB,那么可以如下提交:

spark-submit 
--master spark://master:7077 
--name spark-app
--total-executor-cores=45
--executor-cores=15
--executor-memory=13GB
xxx.py

当然,--executor-memory 可以根据实际情况去调整,先大致看一下有多少空闲的内存:

free -h

然后再调整大小~

欢迎关注本人,我是喜欢搞事的程序猿; 一起进步,一起学习;

欢迎关注知乎:SmallerFL;

也欢迎关注我的wx公众号:一个比特定乾坤

这篇关于spark-submit 主要参数详细说明及Standalone集群最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/852251

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

使用SpringBoot创建一个RESTful API的详细步骤

《使用SpringBoot创建一个RESTfulAPI的详细步骤》使用Java的SpringBoot创建RESTfulAPI可以满足多种开发场景,它提供了快速开发、易于配置、可扩展、可维护的优点,尤... 目录一、创建 Spring Boot 项目二、创建控制器类(Controller Class)三、运行

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-