spark-submit 主要参数详细说明及Standalone集群最佳实践

本文主要是介绍spark-submit 主要参数详细说明及Standalone集群最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 参数说明
  • 3. Standalone集群最佳实践


1. 前言

部署提交应用到 spark 集群,可能会用到 spark-submit 工具,鉴于网上的博客质量残差不齐,且有很多完全是无效且错误的配置,没有搞明白诸如--total-executor-cores--executor-cores--num-executors的关系和区别。因此有必要结合官网文档 submitting-applications 详细记录一下参数的含义。

2. 参数说明

一般的用法是:spark-submit [option] xx.jar/xx.py
详细说明如下:

Usage: spark-submit [options] <app jar | python file | R file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]Options:--master MASTER_URL         spark://host:port, mesos://host:port, yarn,k8s://https://host:port, or local (Default: local[*]).--deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") oron one of the worker machines inside the cluster ("cluster")(Default: client).--class CLASS_NAME          Your application's main class (for Java / Scala apps).--name NAME                 A name of your application.--jars JARS                 Comma-separated list of jars to include on the driverand executor classpaths.--packages                  Comma-separated list of maven coordinates of jars to includeon the driver and executor classpaths. Will search the localmaven repo, then maven central and any additional remoterepositories given by --repositories. The format for thecoordinates should be groupId:artifactId:version.--exclude-packages          Comma-separated list of groupId:artifactId, to exclude whileresolving the dependencies provided in --packages to avoiddependency conflicts.--repositories              Comma-separated list of additional remote repositories tosearch for the maven coordinates given with --packages.--py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to placeon the PYTHONPATH for Python apps.--files FILES               Comma-separated list of files to be placed in the workingdirectory of each executor. File paths of these filesin executors can be accessed via SparkFiles.get(fileName).--archives ARCHIVES         Comma-separated list of archives to be extracted into theworking directory of each executor.--conf, -c PROP=VALUE       Arbitrary Spark configuration property.--properties-file FILE      Path to a file from which to load extra properties. If notspecified, this will look for conf/spark-defaults.conf.--driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).--driver-java-options       Extra Java options to pass to the driver.--driver-library-path       Extra library path entries to pass to the driver.--driver-class-path         Extra class path entries to pass to the driver. Note thatjars added with --jars are automatically included in theclasspath.--executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).--proxy-user NAME           User to impersonate when submitting the application.This argument does not work with --principal / --keytab.--help, -h                  Show this help message and exit.--verbose, -v               Print additional debug output.--version,                  Print the version of current Spark.Spark Connect only:--remote CONNECT_URL       URL to connect to the server for Spark Connect, e.g.,sc://host:port. --master and --deploy-mode cannot be settogether with this option. This option is experimental, andmight change between minor releases.Cluster deploy mode only:--driver-cores NUM          Number of cores used by the driver, only in cluster mode(Default: 1).Spark standalone or Mesos with cluster deploy mode only:--supervise                 If given, restarts the driver on failure.Spark standalone, Mesos or K8s with cluster deploy mode only:--kill SUBMISSION_ID        If given, kills the driver specified.--status SUBMISSION_ID      If given, requests the status of the driver specified.Spark standalone and Mesos only:--total-executor-cores NUM  Total cores for all executors.Spark standalone, YARN and Kubernetes only:--executor-cores NUM        Number of cores used by each executor. (Default: 1 inYARN and K8S modes, or all available cores on the workerin standalone mode).Spark on YARN and Kubernetes only:--num-executors NUM         Number of executors to launch (Default: 2).If dynamic allocation is enabled, the initial number ofexecutors will be at least NUM.--principal PRINCIPAL       Principal to be used to login to KDC.--keytab KEYTAB             The full path to the file that contains the keytab for theprincipal specified above.Spark on YARN only:--queue QUEUE_NAME          The YARN queue to submit to (Default: "default").

我把一些主要的参数列举一下:

  • --master MASTER_URL ,其中 MASTER_URL 可选如下:
    • local,启1个work线程本地运行应用程序
    • local[K],启K个work线程本地运行应用程序
    • local[K,F],启K个work线程本地运行应用程序,且运行中最大容忍F次失败次数
    • local[*],尽可能多启动cpu逻辑线程本地运行应用程序
    • local[*,F],尽可能多启动cpu逻辑线程本地运行应用程序,且运行中最大容忍F次失败次数
    • local-cluster[N,C,M],仅用于单元测试,它在一个JVM中模拟一个分布式集群,其中有N个工作线程,每个工作线程有C个内核,每个工作进程有M MiB的内存。
    • spark://host:port,连接standalone集群的master节点,端口默认7077
    • spark://HOST1:PORT1,HOST2:PORT2,连接带有Zookeeper备份的standalone集群的master节点。该列表必须使用Zookeeper设置高可用性集群中的所有主主机,端口默认7077。
    • mesos://host:port,连接 Mesos 集群,端口默认5050
    • yarn,连接 YARN 集群,此外--deploy-mode参数决定了是client还是cluster模式
    • k8s://https://host:port 连接 K8s 集群,此外--deploy-mode参数决定了是client还是cluster模式
  • --deploy-mode 可选cluster及client。cluster:在work节点上部署driver。client:作为外部client在本地部署driver,默认是client
  • --driver-memory MEM 分配driver的内存,默认1024M
  • --executor-memory MEM 分配每个executor的内存,默认1G
  • --driver-cores NUM driver 可以使用的核数,默认1。注意仅在cluster模式下有效
  • --total-executor-cores NUM 所有的executor总共的核数。注意仅在Spark standalone 以及 Mesos下生效
  • --executor-cores NUM 每个executor可以使用的核数,默认1。注意仅在 Spark standalone, YARN以及Kubernetes下生效
  • --num-executors NUM executor启动的数量,默认2。注意仅在Spark on YARN 以及 Kubernetes下生效

3. Standalone集群最佳实践

因为Spark Standalone集群下--num-executors NUM 参数不生效,而且如果你没有用--deploy-mode=cluster,那么--driver-cores NUM 参数也是不生效的,那么一种可行的提交参数:

spark-submit 
--master spark://master:7077 
--name spark-app
--total-executor-cores={集群机器数}*{一台机器的逻辑核数-1}
--executor-cores={一台机器的逻辑核数-1}
--executor-memory={一台机器的内存-3GB}
xxx.py

例如,Spark Standalone集群有3台机器,每台机器cpu核数是16,每台机器的内存是16GB,那么可以如下提交:

spark-submit 
--master spark://master:7077 
--name spark-app
--total-executor-cores=45
--executor-cores=15
--executor-memory=13GB
xxx.py

当然,--executor-memory 可以根据实际情况去调整,先大致看一下有多少空闲的内存:

free -h

然后再调整大小~

欢迎关注本人,我是喜欢搞事的程序猿; 一起进步,一起学习;

欢迎关注知乎:SmallerFL;

也欢迎关注我的wx公众号:一个比特定乾坤

这篇关于spark-submit 主要参数详细说明及Standalone集群最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/852251

相关文章

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.