【探究图论中dfs记忆化,搜索,递推,回溯关系】跳棋,奶牛隔间, 小A和uim之大逃离 II

本文主要是介绍【探究图论中dfs记忆化,搜索,递推,回溯关系】跳棋,奶牛隔间, 小A和uim之大逃离 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇很高能,如有错误欢迎指出,本人能力有限(需要前置知识记忆化dfs,树形dp,bfs+dp,tarjan)

另外,本篇之所以属于图论,也是想让各位明白,dfs就是就是在跑图!如果dfs离开了图论的知识将会困难重重

记忆化dfs可以看这里

【算法每日一练]-记忆化dfs (保姆级教程 篇4)#滑雪 #天下 第一 #切木棍-CSDN博客

树形dp可以看这里

【算法每日一练]-动态规划 (保姆级教程 篇6(树形dp))-CSDN博客

tarjan可以看这里(这个是重点)

【看不懂你来打我]-图论(保姆级教程篇11 tarjan)无向图的桥 ,无向图的割点 ,有向图的强连通分量-CSDN博客

        

先来题目引出问题:

题目:跳棋

         

碎碎念部分:(如果你有兴趣可以看一下,如有错误欢迎指出,本人能力有限)

题意就是从0的地方选四个方向,跳到下一个0的地方,重复,问问你最远能走多远?

那么我就寻思好嘛,太常见了:我反手就是f[x][y]=max(dfs[下一个0坐标]+当前0坐标到下一个0坐标的距离),然后设置f[x][y]表示从当前点出发能走的最远距离。这样的话还能记忆化加速,我去,我可太聪明了!下面是我的伪代码:

for(4个方向)
{   先获取该方向下一个0点坐标;if(该坐标存在且该坐标并没有走过){   vis[下个坐标]=1;d=dfs(下一个坐标)+两点坐标距离;vis[下个坐标]=0;if(f[x][y]<d)f[x][y]=d;}}
}

然后外面的dfs再加上记忆化和返回值步骤即可。欧了,输入样例---------跑的什么玩意???

        

其实这段代码问题很大!

首先就是vis数组和dfs(下个状态)非常冲突,因为你设置的f[x][y]表示以此为起点去跑,可是你在dfs下一个状态时候的它的vis都不是清空的,它的返回的f结果怎么可能会是对的呢?想要使得下一个状态的结果是正确的就应该让它以起点单独跑,你以为这样就行了?

还是错!因为它的下一个状态还会遇到相同的问题,那么返回的结果也不对,(那不无解了吗

还有一点是记忆化那里:if(f[此状态来过])return f[此状态]。

这句话也不对,因为它的前提是你的f状态的结果是正确的,如果现在还不是正确的,那不应该继续跑它吗?而不是直接去使用呀,所以这句话也不能有!

以上的思路都是来自之前做过的一道滑雪的题。(在开头哪里有,你可以去看一看)

然后我们来对比一下之前做过的“ 滑雪 ”那道记忆化题:

在那个题中,我们设置f[x][y]表示从此点为起点跑的最远距离,然后有f[x][y]=max(f[x][y],dfs(下一个点)+1),之所以这个式子是正确的,是因为它后面的dfs(下一个点)的结果是正确的!那为什么下一个点的dfs是正确的呢?是因为它下一个dfs的结果是正确的,那么为什么它下一个结果是也是正确的呢?是因为它每个下层状态都不依赖于前面的dfs结果,也就是没有环!也正因为没有环,这个dfs的结果一定是正确的。也就是不会改变的,既然都不会再改变,那以后再遇到这种情况还跑啥呀直接使用结果呗,所以就可以记忆化去省时间,它的模式是类似树形dp的,就是不会遇到环。

到这里,你就发现了本题出问题的原因是有环!也就是你的下一个状态要想正确的跑出来,就依赖于之前的状态,但是之前状态的正确性又要靠后面去跑,所以这样去设置f[x][y]的含义是非常不应该的。所有有环的dp都非常危险,无论是你是循环dp还是dfsdp,都不是很妥的。而树形dfs一般都可以来dp,也可以记忆化。

另外,递推一般可以记忆化,搜索当然也可以记忆化,而有环一般就不行了。当然有环一般伴随着回溯。

说了这么多。赶紧回来回来

思路:

本题明显适合搜索,而不是递推。

我们可以直接去搜索跑的,并不会超时,每dfs一个点就先更新一下答案,然后找到下一个0点坐标,如果有的话且没有走过就跳过去,然后从那个点继续跑,回来时候再清空标记。重复。

一套流程行云流水就打出来了。代码如下:

#include <bits/stdc++.h>
using namespace std;
int n,k,ans;
int m[105][105],f[105][105];//f来标记是否来过
int dx[]={-1,1,0,0},dy[]={0,0,1,-1};
void dfs(int x,int y,int step){ans=max(ans,step);//更新答案for(int i=0;i<4;i++){int tx=x,ty=y,s=0;while(tx+dx[i]>0&&tx+dx[i]<=n&&ty+dy[i]>0&&ty+dy[i]<=n){tx+=dx[i];ty+=dy[i];//不断沿着这个向量前进s++;//获取两点距离,注意至少超越一下,s最少是2!if(m[tx][ty]==0)break;}if(tx>0&&tx<=n&&ty<=n&&ty>0&&f[tx][ty]==0&&m[tx][ty]==0&&s!=1){f[tx][ty]=1;dfs(tx,ty,step+s);//搜下一个点f[tx][ty]=0;}}
}
int main(){int x,y;cin>>n>>x>>y;for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)cin>>m[i][j];f[x][y]=1;//标记出发点被走过了dfs(x,y,0);//开始搜索cout<<ans<<'\n';return 0;	
}

 

        

        

 题目:奶牛隔间

        

一开始思路是模拟,后来看到隔间数和奶牛数……好吧不行,那应该就是dp了,循环dp我不太会写,dfsdp应该可以的,好的,那么我们开始写:

设置f[x]表示从x开始访问的隔间数,那么因为从x隔间走,访问的隔间数是一定的,故而可以记忆化节省时间,那么反手就是:

f[x]=dfs(下一个隔间)+1;然后这个式子我是越看越迷糊,下一个隔间要想成功遍历,和上一个状态很冲突啊!因为从下一个隔间为起点的话,当前的隔间x就不能被标记呀,看到了吗?下一个状态会跑到前一个状态,你告诉我这能dp?

思路:

根据题意,一只奶牛停止的条件是来到她所经过过的房间,也就是奶牛想要停下来必须要找到一个环。看到了吧,这是有环的,那么我们也有tarjan啊。来吧!

首先明显是有向图,我们跑一下tarjan把那些环划到一起,然后把环看成一个整体,或者把整个图看成是许多个强连通分量(为什么?因为无论这个环从哪个点进入,返回结果都是一样,都是环长),我们在这些强联通分量之间建立指向关系,然后就可以树形dp了,当然也需要记忆化(不然还是超时)另外提示一下:强联通分量中节点数就是环上点的个数。

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int num,n,be[N],to[N],out[N],dfn[N],low[N],dp[N],sz[N];
bool ins[N];
stack<int>s;
void tarjan(int u){dfn[u]=low[u]=++num;ins[u]=1;s.push(u);int v=to[u];if(!dfn[v]) tarjan(v),low[u]=min(low[u],low[v]);else if(ins[v]) low[u]=min(low[u],dfn[v]);
//	for(int i=0,sz=ve[u].size();i<sz;i++){//老模版了
//		int v=ve[u][i];
//		if(!dfn[v]){
//			tarjan(v);low[u]=min(low[u],low[v]);
//		}
//		else if(ins[v]){
//			low[u]=min(low[u],dfn[v]);
//		}
//	}if(low[u]==dfn[u]){int v;do{v=s.top();s.pop();be[v]=u;ins[v]=0;sz[u]++;//顺便统计这个环(强联通分量)中有多少个点}while(v!=u);}
}
int dfs(int u){if(u==0||dp[u])return dp[u];//记忆化return dp[u]=dfs(out[u])+sz[u];//树形dp
}
int main(){cin>>n;for(int i=1;i<=n;i++)scanf("%d",&to[i]);for(int i=1;i<=n;i++){if(!dfn[i])tarjan(i);}for(int i=1;i<=n;i++){if(be[i]!=be[to[i]])out[be[i]]=be[to[i]];//因为出边只有一个,所以这样建边}for(int i=1;i<=n;i++)printf("%d\n",dfs(be[i]));return 0;
}

        

        

题目:小A和uim之大逃离 II

每个点都有两种状态,问你能不能走出去,可能有人想循环dp,但是这个绝对不能循环dp。

因为循环dp的顺序非常有问题,导致在转移的时候有多点还没有更新就已经被转移了,是必错的结局!那么正解是什么呢?

我认为bfs+dp是最好的,因为bfs是按层跑的,dp应该按层去转移,才是最正确的!

思路:

对于本题,每个点都有两种,如果只有一种,那么就很好转移;但是如果有两种,那么不妨就保存两种点。       
我们bfs是按层跑的,不放设置st[x][y][u]表示走到(x,y)点且没有嗑药的最小步数(u=0),表示走到(x,y)点且已嗑药的最小步数(u=1)

当从当前点cur.x和cur.y准备走到下个点x,y时:

如果到下一点不嗑药,无论u是0还是1,那么都是st[x][y][cur.u]=st[cur.x][cur.y][cur.u]+1。然后入队
如果到下一点再嗑药,那么就是st[x+d][y+r][1]=st[x][y][0]+1。然后入队

千万注意顺序,一定是先不嗑药在前面,把st[x][y][0]更新正确,然后才是考虑这个点嗑药。你当然可以理解成嗑药的话相当于走了两步!(也没有人说bfs的所有点都只能一次走一步啊)

补充:

你会发现这些转移都是具有唯一性的,也就是说仅转移一次。
直观理解:上面是不嗑药的平面点集,u全是0,下面是嗑药的平面点集,u全是1。在跑bfs的时候,我们允许发生点从上面跑到下面,但是不能从下面到上面。
而且下面的点要么是由前面转移过来,要么是从上面点转移过来,只有这两种情况,同时分别对应不嗑药和嗑药。至此,bfs+dp验证成立!

#include <bits/stdc++.h>
using namespace std;
const int N=1005;
int h,w,d,r,st[N][N][2],dx[]={0,0,1,-1},dy[]={1,-1,0,0};
char s[N][N];
struct node {int x,y,u;};
bool check(int x,int y){return x>=1&&y>=1&&x<=h&&y<=w&&s[x][y]=='.';}
int main(){cin>>h>>w>>d>>r;for(int i=1;i<=h;i++)scanf("%s",s[i]+1);//这个写法太妙了!!!一定要会啊memset(st,-1,sizeof(st));st[1][1][0]=0;//初始化queue<node>q;q.push(node{1,1,0});while(!q.empty()&&st[h][w][0]==-1&&st[h][w][1]==-1){//有点跑到终点时候就可以前提停了node cur=q.front();q.pop();for(int i=0;i<4;i++){int x=dx[i]+cur.x,y=dy[i]+cur.y;if(check(x,y)&&st[x][y][cur.u]==-1){q.push((node){x,y,cur.u});//不嗑药的点入队st[x][y][cur.u]=st[cur.x][cur.y][cur.u]+1;//既打标记,又存入答案if(cur.u==0&&check(x+d,y+r)&&st[x+d][y+r][1]==-1){q.push((node){x+d,y+r,1});//嗑药的点入队st[x+d][y+r][1]=st[x][y][0]+1;}}}}if(st[h][w][0]==-1&&st[h][w][1]==-1)cout<<"-1";else{if(st[h][w][0]!=-1&&st[h][w][1]!=-1)cout<<min(st[h][w][0],st[h][w][1]);else {if(st[h][w][0]==-1)cout<<st[h][w][1];else cout<<st[h][w][0];}}
}

看到这里,你果然是高手。

这篇关于【探究图论中dfs记忆化,搜索,递推,回溯关系】跳棋,奶牛隔间, 小A和uim之大逃离 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850753

相关文章

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

在 Java 中,JDK、JRE、JVM 分别代表什么,有何关系和区别?

在Java开发的世界中,我们会经常听到JDK、JRE和JVM这三个词。它们都与Java的运行环境以及Java程序的编译和运行有关,它们之间也存在一些关联性和区别。 什么是JDK、JRE和JVM 我们来看它们分别是什么。 JDK,全称Java Development Kit,即Java开发工具包。顾名思义,JDK是用于Java开发的一套工具包,里面包含了Java的编译器javac、

【文末附gpt升级秘笈】腾讯元宝AI搜索解析能力升级:千万字超长文处理的新里程碑

腾讯元宝AI搜索解析能力升级:千万字超长文处理的新里程碑 一、引言 随着人工智能技术的飞速发展,自然语言处理(NLP)和机器学习(ML)在各行各业的应用日益广泛。其中,AI搜索解析能力作为信息检索和知识抽取的核心技术,受到了广泛的关注和研究。腾讯作为互联网行业的领军企业,其在AI领域的探索和创新一直走在前列。近日,腾讯旗下的AI大模型应用——腾讯元宝,迎来了1.1.7版本的升级,新版本在AI搜

算法与数据结构面试宝典——回溯算法详解(C#,C++)

文章目录 1. 回溯算法的定义及应用场景2. 回溯算法的基本思想3. 递推关系式与回溯算法的建立4. 状态转移方法5. 边界条件与结束条件6. 算法的具体实现过程7. 回溯算法在C#,C++中的实际应用案例C#示例C++示例 8. 总结回溯算法的主要特点与应用价值 回溯算法是一种通过尝试各种可能的组合来找到所有解的算法。这种算法通常用于解决组合问题,如排列、组合、棋盘游

1_CString char* string之间的关系

CString转char*,string string转char*,CString char* 转CString,string 一、CString转char*,string //字串转换测试 CString CString1; std::string string1; CHAR* char1=NULL; //1string1=CString1.GetBuffer();CStri

代码随想录算法训练营第三十九天|62.不同路径 63. 不同路径 II 343.整数拆分 96.不同的二叉搜索树

LeetCode 62.不同路径 题目链接:62.不同路径 踩坑:二维的vector数组需要初始化,否则会报错访问空指针 思路: 确定动态数组的含义:dp[i][j]:到达(i,j)有多少条路经递推公式:dp[i][j] = dp[i-1][j] + dp[i][j-1]初始化动态数组:dp[0][0] = 1遍历顺序:从左到右,从上到下 代码: class Solution {pu

leetcode刷题(45)——35. 二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。” 例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5] 示例 1: 输入: root = [

leetcode刷题(39)——反转链表 II

这道题可以说是非常难的,2中解法,迭代和递归,递归更加难想出来 解法1:迭代链接反转 算法 在看具体算法之前,有必要先弄清楚链接反转的原理以及需要哪些指针。举例而言,有一个三个不同结点组成的链表 A → B → C,需要反转结点中的链接成为 A ← B ← C。 假设我们有两个指针,一个指向结点 A,一个指向结点 B。 分别记为 prev 和 cur。则可以用这两个指针简单地实现 A 和 B

leetcode刷题(38)——142. 环形链表 II

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。 说明:不允许修改给定的链表。 示例 1: 输入:head = [3,2,0,-4], pos = 1 输出:tail connects to node index 1

leetcode刷题(93)——213. 打家劫舍 II

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。 示例 1: 输入: [2,3,2]输出: 3解释: