大模型面试准备(五):图解 Transformer 最关键模块 MHA

2024-03-27 03:04

本文主要是介绍大模型面试准备(五):图解 Transformer 最关键模块 MHA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何备战、面试常考点分享等热门话题进行了深入的讨论。


合集在这里:《大模型面试宝典》(2024版) 正式发布!


Transformer 原始论文中的模型结构如下图所示:
图片

上一篇文章讲解了 Transformer 的关键模块 Positional Encoding(大家可以自行翻阅),本篇文章讲解一下 Transformer 的最重要模块 Multi-Head Attention(MHA),毕竟 Transformer 的论文名称就叫 《Attention Is All You Need》。

Transformer 中的 Multi-Head Attention 可以细分为3种,Multi-Head Self-Attention(对应上图左侧Multi-Head Attention模块),Multi-Head Cross-Attention(对应上图右上Multi-Head Attention模块),Masked Multi-Head Self-Attention(对应上图右下Masked Multi-Head Attention模块)。

其中 Self 和 Cross 的区分是对应的 Q和 K、 V是否来自相同的输入。是否Mask的区分是是否需要看见全部输入和预测的输出,Encoder需要看见全部的输入问题,所以不能Mask;而Decoder是预测输出,当前预测只能看见之前的全部预测,不能看见之后的预测,所以需要Mask。

本篇文章主要通过图解的方式对 Multi-Head Attention 的核心思想和计算过程做讲解,喜欢本文记得收藏、点赞、关注。技术和面试交流,文末加入我们

MHA核心思想

在这里插入图片描述

MHA过程图解

注意力计算公式如下:

在这里插入图片描述

图示过程图下:

图片

多头注意力

MHA通过多个头的方式,可以增强自注意力机制聚合上下文信息的能力,以关注上下文的不同侧面,作用类似于CNN的多个卷积核。下面我们就通过一张图来完成MHA的解析:

图片

在这里插入图片描述

单头注意力

知道了多头注意力的实现方式后,那如果是通过单头注意力完成同样的计算,矩阵形式是什么样的呢?下面我还是以一图胜千言的方式来回答这个问题:

图片通过单头注意力的比较,相信大家对多头注意力(MHA)应该有了更好的理解。我们可以发现多头注意力就是将一个单头进行了切分计算,最后又将结果进行了合并,整个过程中的整体维度和计算量基本是不变的,但提升了模型的学习能力。

最后附上一份MHA的实现和Transformer的构建代码:

import torch
import torch.nn as nn# 定义多头自注意力层
class MultiHeadAttention(nn.Module):def __init__(self, d_model, n_heads):super(MultiHeadAttention, self).__init__()self.n_heads = n_heads  # 多头注意力的头数self.d_model = d_model  # 输入维度(模型的总维度)self.head_dim = d_model // n_heads  # 每个注意力头的维度assert self.head_dim * n_heads == d_model, "d_model必须能够被n_heads整除"  # 断言,确保d_model可以被n_heads整除# 线性变换矩阵,用于将输入向量映射到查询、键和值空间self.wq = nn.Linear(d_model, d_model)  # 查询(Query)的线性变换self.wk = nn.Linear(d_model, d_model)  # 键(Key)的线性变换self.wv = nn.Linear(d_model, d_model)  # 值(Value)的线性变换# 最终输出的线性变换,将多头注意力结果合并回原始维度self.fc_out = nn.Linear(d_model, d_model)  # 输出的线性变换def forward(self, query, key, value, mask):# 将嵌入向量分成不同的头query = query.view(query.shape[0], -1, self.n_heads, self.head_dim)key = key.view(key.shape[0], -1, self.n_heads, self.head_dim)value = value.view(value.shape[0], -1, self.n_heads, self.head_dim)# 转置以获得维度 batch_size, self.n_heads, seq_len, self.head_dimquery = query.transpose(1, 2)key = key.transpose(1, 2)value = value.transpose(1, 2)# 计算注意力得分scores = torch.matmul(query, key.transpose(-2, -1)) / self.head_dimif mask is not None:scores = scores.masked_fill(mask == 0, -1e9)attention = torch.nn.functional.softmax(scores, dim=-1)out = torch.matmul(attention, value)# 重塑以恢复原始输入形状out = out.transpose(1, 2).contiguous().view(query.shape[0], -1, self.d_model)out = self.fc_out(out)return out# 定义Transformer编码器层
class TransformerEncoderLayer(nn.Module):def __init__(self, d_model, n_heads, dim_feedforward, dropout):super(TransformerEncoderLayer, self).__init__()# 多头自注意力层,接收d_model维度输入,使用n_heads个注意力头self.self_attn = MultiHeadAttention(d_model, n_heads)# 第一个全连接层,将d_model维度映射到dim_feedforward维度self.linear1 = nn.Linear(d_model, dim_feedforward)# 第二个全连接层,将dim_feedforward维度映射回d_model维度self.linear2 = nn.Linear(dim_feedforward, d_model)# 用于随机丢弃部分神经元,以减少过拟合self.dropout = nn.Dropout(dropout)# 第一个层归一化层,用于归一化第一个全连接层的输出self.norm1 = nn.LayerNorm(d_model)# 第二个层归一化层,用于归一化第二个全连接层的输出self.norm2 = nn.LayerNorm(d_model)def forward(self, src, src_mask):# 使用多头自注意力层处理输入src,同时提供src_mask以屏蔽不需要考虑的位置src2 = self.self_attn(src, src, src, src_mask)# 残差连接和丢弃:将自注意力层的输出与原始输入相加,并应用丢弃src = src + self.dropout(src2)# 应用第一个层归一化src = self.norm1(src)# 经过第一个全连接层,再经过激活函数ReLU,然后进行丢弃src2 = self.linear2(self.dropout(torch.nn.functional.relu(self.linear1(src))))# 残差连接和丢弃:将全连接层的输出与之前的输出相加,并再次应用丢弃src = src + self.dropout(src2)# 应用第二个层归一化src = self.norm2(src)# 返回编码器层的输出return src# 实例化模型
vocab_size = 10000  # 词汇表大小(根据实际情况调整)
d_model = 512  # 模型的维度
n_heads = 8  # 多头自注意力的头数
num_encoder_layers = 6  # 编码器层的数量
dim_feedforward = 2048  # 全连接层的隐藏层维度
max_seq_length = 100  # 最大序列长度
dropout = 0.1  # 丢弃率# 创建Transformer模型实例
model = Transformer(vocab_size, d_model, n_heads, num_encoder_layers, dim_feedforward, max_seq_length, dropout)

最后的最后再贴上一张非常不错的 Transformer 手绘吧!

在这里插入图片描述

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流

用通俗易懂方式讲解系列

  • 《大模型面试宝典》(2024版) 正式发布!
  • 《大模型实战宝典》(2024版)正式发布!
  • 大模型面试准备(一):LLM主流结构和训练目标、构建流程
  • 大模型面试准备(二):LLM容易被忽略的Tokenizer与Embedding
  • 大模型面试准备(三):聊一聊大模型的幻觉问题
  • 大模型面试准备(四):大模型面试必会的位置编码(绝对位置编码sinusoidal,旋转位置编码RoPE,以及相对位置编码ALiBi)

参考文献:

参考资料:
[1] https://jalammar.github.io/illustrated-transformer/
[2] https://zhuanlan.zhihu.com/p/264468193
[3] https://zhuanlan.zhihu.com/p/662777298

这篇关于大模型面试准备(五):图解 Transformer 最关键模块 MHA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/850729

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll