大模型面试准备(五):图解 Transformer 最关键模块 MHA

2024-03-27 03:04

本文主要是介绍大模型面试准备(五):图解 Transformer 最关键模块 MHA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何备战、面试常考点分享等热门话题进行了深入的讨论。


合集在这里:《大模型面试宝典》(2024版) 正式发布!


Transformer 原始论文中的模型结构如下图所示:
图片

上一篇文章讲解了 Transformer 的关键模块 Positional Encoding(大家可以自行翻阅),本篇文章讲解一下 Transformer 的最重要模块 Multi-Head Attention(MHA),毕竟 Transformer 的论文名称就叫 《Attention Is All You Need》。

Transformer 中的 Multi-Head Attention 可以细分为3种,Multi-Head Self-Attention(对应上图左侧Multi-Head Attention模块),Multi-Head Cross-Attention(对应上图右上Multi-Head Attention模块),Masked Multi-Head Self-Attention(对应上图右下Masked Multi-Head Attention模块)。

其中 Self 和 Cross 的区分是对应的 Q和 K、 V是否来自相同的输入。是否Mask的区分是是否需要看见全部输入和预测的输出,Encoder需要看见全部的输入问题,所以不能Mask;而Decoder是预测输出,当前预测只能看见之前的全部预测,不能看见之后的预测,所以需要Mask。

本篇文章主要通过图解的方式对 Multi-Head Attention 的核心思想和计算过程做讲解,喜欢本文记得收藏、点赞、关注。技术和面试交流,文末加入我们

MHA核心思想

在这里插入图片描述

MHA过程图解

注意力计算公式如下:

在这里插入图片描述

图示过程图下:

图片

多头注意力

MHA通过多个头的方式,可以增强自注意力机制聚合上下文信息的能力,以关注上下文的不同侧面,作用类似于CNN的多个卷积核。下面我们就通过一张图来完成MHA的解析:

图片

在这里插入图片描述

单头注意力

知道了多头注意力的实现方式后,那如果是通过单头注意力完成同样的计算,矩阵形式是什么样的呢?下面我还是以一图胜千言的方式来回答这个问题:

图片通过单头注意力的比较,相信大家对多头注意力(MHA)应该有了更好的理解。我们可以发现多头注意力就是将一个单头进行了切分计算,最后又将结果进行了合并,整个过程中的整体维度和计算量基本是不变的,但提升了模型的学习能力。

最后附上一份MHA的实现和Transformer的构建代码:

import torch
import torch.nn as nn# 定义多头自注意力层
class MultiHeadAttention(nn.Module):def __init__(self, d_model, n_heads):super(MultiHeadAttention, self).__init__()self.n_heads = n_heads  # 多头注意力的头数self.d_model = d_model  # 输入维度(模型的总维度)self.head_dim = d_model // n_heads  # 每个注意力头的维度assert self.head_dim * n_heads == d_model, "d_model必须能够被n_heads整除"  # 断言,确保d_model可以被n_heads整除# 线性变换矩阵,用于将输入向量映射到查询、键和值空间self.wq = nn.Linear(d_model, d_model)  # 查询(Query)的线性变换self.wk = nn.Linear(d_model, d_model)  # 键(Key)的线性变换self.wv = nn.Linear(d_model, d_model)  # 值(Value)的线性变换# 最终输出的线性变换,将多头注意力结果合并回原始维度self.fc_out = nn.Linear(d_model, d_model)  # 输出的线性变换def forward(self, query, key, value, mask):# 将嵌入向量分成不同的头query = query.view(query.shape[0], -1, self.n_heads, self.head_dim)key = key.view(key.shape[0], -1, self.n_heads, self.head_dim)value = value.view(value.shape[0], -1, self.n_heads, self.head_dim)# 转置以获得维度 batch_size, self.n_heads, seq_len, self.head_dimquery = query.transpose(1, 2)key = key.transpose(1, 2)value = value.transpose(1, 2)# 计算注意力得分scores = torch.matmul(query, key.transpose(-2, -1)) / self.head_dimif mask is not None:scores = scores.masked_fill(mask == 0, -1e9)attention = torch.nn.functional.softmax(scores, dim=-1)out = torch.matmul(attention, value)# 重塑以恢复原始输入形状out = out.transpose(1, 2).contiguous().view(query.shape[0], -1, self.d_model)out = self.fc_out(out)return out# 定义Transformer编码器层
class TransformerEncoderLayer(nn.Module):def __init__(self, d_model, n_heads, dim_feedforward, dropout):super(TransformerEncoderLayer, self).__init__()# 多头自注意力层,接收d_model维度输入,使用n_heads个注意力头self.self_attn = MultiHeadAttention(d_model, n_heads)# 第一个全连接层,将d_model维度映射到dim_feedforward维度self.linear1 = nn.Linear(d_model, dim_feedforward)# 第二个全连接层,将dim_feedforward维度映射回d_model维度self.linear2 = nn.Linear(dim_feedforward, d_model)# 用于随机丢弃部分神经元,以减少过拟合self.dropout = nn.Dropout(dropout)# 第一个层归一化层,用于归一化第一个全连接层的输出self.norm1 = nn.LayerNorm(d_model)# 第二个层归一化层,用于归一化第二个全连接层的输出self.norm2 = nn.LayerNorm(d_model)def forward(self, src, src_mask):# 使用多头自注意力层处理输入src,同时提供src_mask以屏蔽不需要考虑的位置src2 = self.self_attn(src, src, src, src_mask)# 残差连接和丢弃:将自注意力层的输出与原始输入相加,并应用丢弃src = src + self.dropout(src2)# 应用第一个层归一化src = self.norm1(src)# 经过第一个全连接层,再经过激活函数ReLU,然后进行丢弃src2 = self.linear2(self.dropout(torch.nn.functional.relu(self.linear1(src))))# 残差连接和丢弃:将全连接层的输出与之前的输出相加,并再次应用丢弃src = src + self.dropout(src2)# 应用第二个层归一化src = self.norm2(src)# 返回编码器层的输出return src# 实例化模型
vocab_size = 10000  # 词汇表大小(根据实际情况调整)
d_model = 512  # 模型的维度
n_heads = 8  # 多头自注意力的头数
num_encoder_layers = 6  # 编码器层的数量
dim_feedforward = 2048  # 全连接层的隐藏层维度
max_seq_length = 100  # 最大序列长度
dropout = 0.1  # 丢弃率# 创建Transformer模型实例
model = Transformer(vocab_size, d_model, n_heads, num_encoder_layers, dim_feedforward, max_seq_length, dropout)

最后的最后再贴上一张非常不错的 Transformer 手绘吧!

在这里插入图片描述

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流

用通俗易懂方式讲解系列

  • 《大模型面试宝典》(2024版) 正式发布!
  • 《大模型实战宝典》(2024版)正式发布!
  • 大模型面试准备(一):LLM主流结构和训练目标、构建流程
  • 大模型面试准备(二):LLM容易被忽略的Tokenizer与Embedding
  • 大模型面试准备(三):聊一聊大模型的幻觉问题
  • 大模型面试准备(四):大模型面试必会的位置编码(绝对位置编码sinusoidal,旋转位置编码RoPE,以及相对位置编码ALiBi)

参考文献:

参考资料:
[1] https://jalammar.github.io/illustrated-transformer/
[2] https://zhuanlan.zhihu.com/p/264468193
[3] https://zhuanlan.zhihu.com/p/662777298

这篇关于大模型面试准备(五):图解 Transformer 最关键模块 MHA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850729

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨