量化投资丨多因子选股模型是如何赚钱的?

2024-03-27 01:30

本文主要是介绍量化投资丨多因子选股模型是如何赚钱的?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一千个读者眼里有一千个哈姆雷特。其实,每个投资者脑中都有一个多因子量化模型。信奉价值投资的基金经理会选择估值低、基本面较好的股票,也许还会考虑过去一段时间的涨跌幅,这就涉及了至少3个因子;个人投资者也是一样。

 

多因子量化投资就是将上述人脑决策的过程写成程序,不同之处则是大脑考虑不了10个以上的因子,而模型可以考虑100个甚至更多的候选因子。

 

多因子选股模型的起源

在多因子选股模型出现之前,广泛被市场接受的是Sharp(1964),Lintner(1965)和Black(1972)年提出的资本资产定价模型(CAPM)。

主流观点认为,股票的收益只与整个股票市场的系统风险存在线性关系。即R=Rf+β(Rm-Rf)。但是,后来许多学者发现股票的收益还与许多其他因素相关,如市盈率、账面市值比等,其中最为著名的是Fama-French的三因子模型,由此开启了多因子选股的时代。

在最早的Fama和French的三因子模型中,将市场资产组合、市值因子和账面市值比因子纳入模型中,三因子虽然突破了原CAPM的框架,但依旧有如短期反转、中期动量等较多变量未被解释。

于是,多因子选股模型呼之欲出。

多因子选股模型

是指采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型的关键是找到因子与收益率之间的关联性,而“因子”就是这个投资方法考虑的因素。其核心思想在于,市场虽然是动态的、轮动的,但是总会有一些因子在一段时间内发挥作用。在实践中,由于每一个分析师对于市场的动态、因子的理解都有所不同,所以会构建出不同的多因子模型。可以说多因子模型是三因子模型的拓展。

举个栗子,一批运动员参加马拉松比赛,如果我们想知道哪些选手最终可能会取得比较好的名次,理论上我们可以在开跑前对他们做一个身体测试,测一下他们的肺活量、最大摄氧量等指标,并对测试的结果进行排名,排名靠前的选手获得好名次的可能性就比较大。多因子模型的原理与此类似,可以利用某些指标(因子)选择未来可能表现较好的股票。

多因子模型的判断方法

一般而言,多因子选股模型有两种判断方法,一是打分法,二是回归法。

1、打分法

打分法是根据各因子的大小对股票进行打分,按照一定的权重加权得到一个总分,再根据总分筛选股票。

打分法的优点是相对比较稳健,不容易受到极端值的影响。但打分法主观性较强,需要人为设定各个因子的权重,这也是比较困难和关键的地方。

2、回归法

回归法就是用过去股票的收益率对多因子进行回归,得到一个回归方程,然后把最新的因子值代入回归方程得到一个对未来股票收益的预判,并依此进行选股。

回归法的优点是能够比较及时地调整股票对各因子的敏感性,而且不同的股票对不同的因子的敏感性也可以不同。回归法的缺点在于很难找到一个精确拟合的回归方程,存在很大的模型误差,所以实战中用处不广。

多因子模型的建立

多因子选股模型的建立一般分为五步,首先是选取候选因子、检验选股因子有效性、剔除冗余因子、建立综合评分模型和持续改进模型。

其中,选取候选因子主要依赖于经济逻辑和市场经验,主要因素包括PS,PE,PCF,营业收入增长率,净利润增长率,经营现金流增长率,ROE增长率,ROA增长率等。也包括一些技术面的因素,如动量、换手率、波动率等。

检验选股因子有效性是通过排序的方法检验候选因子的有效性。在模型形成期开始计算市场中每只交易股票的该因子大小,进行排序,并平均分为n个组合,一直持续到月末,以此每隔一段时间重复进行。具体的参数优选需要历史数据的检验。

剔除冗余因子的原理是不同的选股因子内在的驱动因素大致相同,所选出的组合在个股构成和收益方面有较高的一致性,因此需要剔除这些多余的因子,只保留同类中收益最好的一个因子。

建立综合评分模型是在剔除冗余因子后,对市场中正常交易的个股计算每个因子的最新得分按一定的权重求得所有因子的平均分。最后,根据模型分数对股票进行排序,根据需要选择排名靠前的股票。

此外,对于量化选股打分法还需要注意两个方面:一方面,多因子选股模型中有的因子会逐渐失效,而另一些新的因子可能被验证有效而加入到模型当中;

另一方面,一些因子可能在过去的市场环境下比较有效,而随着市场风格的改变,这些因子可能短期内失效。在这种情况下,对综合评分选股模型的使用过程中,需要对选用的因子、模型本身做持续的再评价和不断的改进以适应变化的市场环境。

推荐阅读:

1.一个量化策略师的自白(好文强烈推荐)

2.市面上经典的量化交易策略都在这里了!(源码)

3.期货/股票数据大全查询(历史/实时/Tick/财务等)

4.干货| 量化金融经典理论、重要模型、发展简史大全

5.从量化到高频交易,不可不读的五本书

6.如何有效的规避量化交易中的滑点?

这篇关于量化投资丨多因子选股模型是如何赚钱的?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850517

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者