Linux系统性能分析——iostat

2024-03-26 23:18

本文主要是介绍Linux系统性能分析——iostat,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

I/O子系统的监视器——iostat

一、iostat是什么?

iostat(I/O statistics),用来动态监视系统的I/O操作活动。

二、iostat能做什么?

通过iostat方便查看CPU、网卡、tty设备、磁盘、CD-ROM 等等设备的活动情况, 负载信息。

三、iostat怎么使用?

用法: iostat [ 选项 ] [ <时间间隔> [ <次数> ] ]
选项:
[ -c ] [ -d ] [ -N ] [ -n ] [ -h ] [ -k | -m ] [ -t ] [ -V ] [ -x ] [ -z ]
[ <设备> [...] | ALL ] [ -p [ <设备> [,...] | ALL ] ]

选项
-c: 显示CPU使用情况
-d: 显示磁盘使用情况
-k: 以 KB 为单位显示
-m: 以 M 为单位显示
-N: 显示磁盘阵列(LVM) 信息
-n: 显示NFS 使用情况
-p: [磁盘] 显示磁盘和分区的情况
-t: 显示终端和CPU的信息
-x: 显示详细信息
-V: 显示版本信息

$ iostat -c
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.03    0.00    0.04    0.01    0.00   99.91[tangf@localhost ~]$ iostat
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.03    0.00    0.04    0.01    0.00   99.91Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.01         0.00         88          0
sda               0.38        27.09         1.58     448172      26176
  • %user :用户模式下CPU时间占用比例;
  • %nice :通过nice改变了进程调度优先级的进程,在用户模式下CPU时间占用比例
  • %system :系统模式下CPU时间占用比例;
  • %iowait :CPU等待磁盘I/O导致空闲状态CPU时间占用比例;
  • %steal :当hypervisor服务另一个虚拟处理器的时候,虚拟CPU等待实际CPU的时间的百分比(如果此值过大,说明主机分配的虚拟机数量过多)
  • %idle :CPU空闲时间占用比例;

使用-k、-m参数,指定显示单位,默认B(字节)为单位

$ iostat -d
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.82         4.80     449708     108904$ iostat -dk
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:            tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
scd0              0.00         0.00         0.00         44          0
sda               0.31         9.90         2.40     224854      54452$ iostat -dm
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:            tps    MB_read/s    MB_wrtn/s    MB_read    MB_wrtn
scd0              0.00         0.00         0.00          0          0
sda               0.31         0.01         0.00        219         53
  • tps :该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。“一次传输”意思是“一次I/O请求”。多个逻辑请求可能会被合并为“一次I/O请求”。“一次传输”请求的大小是未知的。
  • kB_read/s :每秒从设备(drive expressed)读取的数据量;
  • kB_wrtn/s :每秒向设备(drive expressed)写入的数据量;
  • kB_read :读取的总数据量
  • kB_wrtn :写入的总数据量;

注:如果%iowait的值过高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,如果%idle值高但系统响应慢时,有可能是CPU等待分配内存,此时应加大内存容量。%idle值如果持续低于10,那么系统的CPU处理能力相对较低,表明系统中最需要解决的资源是CPU。

$ iostat -N
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.04    0.00    0.05    0.01    0.00   99.90Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.59         4.75     449708     109128$ iostat -n
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Filesystem:              rBlk_nor/s   wBlk_nor/s   rBlk_dir/s   wBlk_dir/s   rBlk_svr/s   wBlk_svr/s     ops/s    rops/s    wops/s$ iostat -p
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.04    0.00    0.05    0.01    0.00   99.90Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.69         4.78     449708     109128
sda1              0.03         0.87         0.00      19802         24
sda2              0.26        18.63         4.78     425602     109104
sda3              0.02         0.14         0.00       3088          0$ iostat -t
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)2020年02月03日 12时08分35秒
avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.04    0.00    0.05    0.01    0.00   99.90Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.66         4.77     449708     109128$ iostat -V
sysstat 版本 9.0.4
(C) Sebastien Godard (sysstat <at> orange.fr)

-x选项,查看详细信息

$ iostat -dx 1 2
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
scd0              0.00     0.00    0.00    0.00     0.01     0.00     8.00     0.00    0.64   0.64   0.00
sda               0.34     0.09    0.27    0.10    25.84     1.55    74.42     0.00    6.09   0.90   0.03Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
scd0              0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sda               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
  • rrqm/s: 每秒进行 merge 的读操作数目.即 delta(rmerge)/s
  • wrqm/s: 每秒进行 merge 的写操作数目.即 delta(wmerge)/s
  • r/s: 每秒完成的读 I/O 设备次数.即 delta(rio)/s
  • w/s: 每秒完成的写 I/O 设备次数.即 delta(wio)/s
  • rsec/s: 每秒读扇区数.即 delta(rsect)/s
  • wsec/s: 每秒写扇区数.即 delta(wsect)/s
  • rkB/s: 每秒读K字节数.是 rsect/s 的一半,因为每扇区大小为512字节.(需要计算)
  • wkB/s: 每秒写K字节数.是 wsect/s 的一半.(需要计算)
  • avgrq-sz:平均每次设备I/O操作的数据大小 (扇区).delta(rsect+wsect)/delta(rio+wio)
  • avgqu-sz:平均I/O队列长度.即 delta(aveq)/s/1000 (因为aveq的单位为毫秒).
  • await: 平均每次设备I/O操作的等待时间 (毫秒).即 delta(ruse+wuse)/delta(rio+wio)
  • svctm: 平均每次设备I/O操作的服务时间 (毫秒).即 delta(use)/delta(rio+wio)
  • %util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的,即 delta(use)/s/1000 (因为use的单位为毫秒)
  • 如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。 idle小于70% IO压力就较大了,一般读取速度有较多的wait。 同时可以结合vmstat 查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)。另外 await值也要多和 svctm值结合起来参考,差的过高就一定有 IO 的问题。
  • avgrq-sz也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小。如果数据拿的大,IO 的数据才会高。也可以通过 avgrq-sz × ( r/s or w/s ) = rsec/s or wsec/s。也就是讲,读定速度是这个来决定的。
  • svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。
    队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

形象的比喻:

  • r/s+w/s 类似于交款人的总数
  • 平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
  • 平均服务时间(svctm)类似于收银员的收款速度
  • 平均等待时间(await)类似于平均每人的等待时间
  • 平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
    I/O 操作率 (%util)类似于收款台前有人排队的时间比例
    设备IO操作:总IO(io)/s = r/s(读) +w/s(写)
  • 平均等待时间=单个I/O服务器时间*(1+2+…+请求总数-1)/请求总数
  • 每秒发出的I/0请求很多,但是平均队列就4,表示这些请求比较均匀,大部分处理还是比较及时。

这篇关于Linux系统性能分析——iostat的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850182

相关文章

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期