038—pandas 重采样线性插补

2024-03-26 21:20
文章标签 采样 线性 pandas 038 插补

本文主要是介绍038—pandas 重采样线性插补,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数据处理时,由于采集数据量有限,或者采集数据粒度过小,经常需要对数据重采样。在本例中,我们将实现一个类型超分辨率的操作。

思路:

  • 首先将原始数据长度扩展为 3 倍,可以使用 loc[] 方法对索引扩展来生成,同时去掉尾部多余的数据。
  • 再将每行数据扩展出的数据挖去(设置为空),这个操作我们在案例 使用 explode() 后不复制其他列 中有过讲解。
  • 最后使用 DataFrame 的 interpolate() 插补方法会默认按线性逻辑进行填充。

使用步骤

读入数据

代码如下(示例):

import pandas as pd
import numpy as npdf = pd.DataFrame({'A': [10, 20, 50, 40, 80,],'B': [2, 8, 10, 6, 4, ],})df
# 这个数据共有 5 行,现在我们需要扩展它,在前相邻两个数据之间由一个扩展为 3 个。如 0 和 1 之间再增加两个数据,最终数据为 13 行。
# 新增加的数据行,按整体按线性插补的算法补充。

在这里插入图片描述

# 将索引重复三次:
df.index.repeat(3)

在这里插入图片描述

# 将得到的索引传入 loc[] 得到扩展数据:
df.loc[df.index.repeat(3)]

在这里插入图片描述

# 去掉尾部多余的数据:
(df.loc[df.index.repeat(3)].iloc[:-3+1] # 删除最后三个(可为变量),再保留1个,方便以后封装
)

在这里插入图片描述

# 再接我们之前案例的方法将扩展出来的数据设置为空:
def func(d: pd.DataFrame):d.iloc[1:, :] = Nonereturn d(df.loc[df.index.repeat(3)].iloc[:-3+1].groupby(level=0).apply(func)
)

在这里插入图片描述

# 最后再用 interpolate() 插补数据,整体代码如下:
def func(d: pd.DataFrame):d.iloc[1:, :] = Nonereturn d # 将第一行及其之后的行设置为None(df.loc[df.index.repeat(3)]  # 将df的每个索引值重复3次.iloc[:-3+1] # 取除了最后3行的所有行.groupby(level=0) # 按照索引值进行分组.apply(func) # 对每个分组应用函数func.interpolate() # 对缺失值进行插补
)

在这里插入图片描述

# 其他方法:
# 我们还可以尝试用分组方法合并进去空 DataFrame,然后再做插补。
none_df = pd.DataFrame([[None]*len(df.columns)], # 将空DataFrame与原DataFrame合并columns=df.columns,  dtype=float,)
none_df

在这里插入图片描述

(df.groupby(level=0, group_keys=False)  # 按照索引值进行分组 .apply(lambda x: pd.concat([x, *[none_df]*2])) # 将空DataFrame与原DataFrame合并.interpolate() # 对缺失值进行插补.iloc[:-2]  # 取除了最后2行的所有行 
)

在这里插入图片描述

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

这篇关于038—pandas 重采样线性插补的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849877

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^