本文主要是介绍【智能算法】海马优化算法(SHO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 1.背景
- 2.算法原理
- 2.1算法思想
- 2.2算法过程
- 3.结果展示
- 4.参考文献
1.背景
2022年,Zhao等人受到海马自然社会行为启发,提出了海马优化算法(Sea-horse Optimizer, SHO)。
2.算法原理
2.1算法思想
SHO模拟了海马群在自然界中的运动、捕食和繁殖行为。
2.2算法过程
海马探索阶段主要负责全局探索,海马个体通过正态分布 r1 选择运动模式(莱维飞行,布朗随机游走)进行位置更新,表述为:
X n e w 1 ( t + 1 ) = { X i ( t ) + L e v y ( λ ) ( ( X e l i t e ( t ) − X i ( t ) ) × x × y × z + X e l i t e ) r 1 > 0 X i ( t ) + r a n d ∗ l ∗ β t ∗ ( X i ( t ) − β t ∗ X e l i t e ) r 1 ≤ 0 (1) \left.X_{new}^{1}(t+1)=\left\{\begin{array}{ll}X_{i}(t)+Levy(\lambda)((X_{elite}\left(t\right)-X_{i}\left(t\right))\times x\times y\times z+X_{elite})&r_{1}>0\\\\X_{i}\left(t\right)+rand^{*}l^{*}\beta_{t}{}^{*}\left(X_{i}\left(t\right)-\beta_{t}{}^{*}X_{elite}\right)&r_{1}\leq0\end{array}\right.\right.\tag{1} Xnew1(t+1)=⎩ ⎨ ⎧Xi(t)+Levy(λ)((Xelite(t)−Xi(t))×x×y×z+Xelite)Xi(t)+rand∗l∗βt∗(Xi(t)−βt∗Xelite)r1>0r1≤0(1)
海马捕食阶段主要根据探索阶段选出的最优个体进行局部探索。该阶段采用捕食成功概率来选择不同运动模式,其中捕食成功概率超过 90%。
X n e w 2 ( t + 1 ) = { α ∗ ( X e l i t e − r a n d ∗ X n e w 1 ( t ) ) + ( 1 − α ) ∗ X e l i t e i f r 2 > 0.1 ( 1 − α ) ∗ ( X n e w 1 ( t ) − r a n d ∗ X e l i t e ) + α ∗ X n e w 1 ( t ) i f r 2 ≤ 0.1 (2) X_{new}^2\left(t+1\right)=\begin{cases}\alpha^*\left(X_{elite}-rand^*X_{new}^1\left(t\right)\right)+(1-\alpha)^*X_{elite}&ifr_2>0.1\\\\(1-\alpha)^*\left(X_{new}^1\left(t\right)-rand^*X_{elite}\right)+\alpha^*X_{new}^1\left(t\right)&ifr_2\leq0.1\end{cases}\tag{2} Xnew2(t+1)=⎩ ⎨ ⎧α∗(Xelite−rand∗Xnew1(t))+(1−α)∗Xelite(1−α)∗(Xnew1(t)−rand∗Xelite)+α∗Xnew1(t)ifr2>0.1ifr2≤0.1(2)
海马移动步长a表述为:
α = ( 1 − t T ) 2 t T (3) \alpha=\left(1-\frac tT\right)^{\frac{2t}T}\tag{3} α=(1−Tt)T2t(3)
海马群繁殖阶段主要进行局部寻优。在该阶段,海马子代会随机继承探索和捕食阶段父母双方的基因,以寻找最优个体。具体位置更新公式为:
X i o f f s p r i n g = r 3 X i f a t h e r + ( 1 − r 3 ) X i m o t h e r (4) X_i^{offspring}=r_3X_i^{father}+(1-r_3)X_i^{mother}\tag{4} Xioffspring=r3Xifather+(1−r3)Ximother(4)
伪代码:
3.结果展示
4.参考文献
[1] Zhao S, Zhang T, Ma S, et al. Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems[J]. Applied Intelligence, 2023, 53(10): 11833-11860.
这篇关于【智能算法】海马优化算法(SHO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!