【智能算法】海马优化算法(SHO)原理及实现

2024-03-26 20:12

本文主要是介绍【智能算法】海马优化算法(SHO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2022年,Zhao等人受到海马自然社会行为启发,提出了海马优化算法(Sea-horse Optimizer, SHO)。

2.算法原理

2.1算法思想

SHO模拟了海马群在自然界中的运动、捕食和繁殖行为。

2.2算法过程

海马探索阶段主要负责全局探索,海马个体通过正态分布 r1 选择运动模式(莱维飞行,布朗随机游走)进行位置更新,表述为:
X n e w 1 ( t + 1 ) = { X i ( t ) + L e v y ( λ ) ( ( X e l i t e ( t ) − X i ( t ) ) × x × y × z + X e l i t e ) r 1 > 0 X i ( t ) + r a n d ∗ l ∗ β t ∗ ( X i ( t ) − β t ∗ X e l i t e ) r 1 ≤ 0 (1) \left.X_{new}^{1}(t+1)=\left\{\begin{array}{ll}X_{i}(t)+Levy(\lambda)((X_{elite}\left(t\right)-X_{i}\left(t\right))\times x\times y\times z+X_{elite})&r_{1}>0\\\\X_{i}\left(t\right)+rand^{*}l^{*}\beta_{t}{}^{*}\left(X_{i}\left(t\right)-\beta_{t}{}^{*}X_{elite}\right)&r_{1}\leq0\end{array}\right.\right.\tag{1} Xnew1(t+1)= Xi(t)+Levy(λ)((Xelite(t)Xi(t))×x×y×z+Xelite)Xi(t)+randlβt(Xi(t)βtXelite)r1>0r10(1)
海马捕食阶段主要根据探索阶段选出的最优个体进行局部探索。该阶段采用捕食成功概率来选择不同运动模式,其中捕食成功概率超过 90%。
X n e w 2 ( t + 1 ) = { α ∗ ( X e l i t e − r a n d ∗ X n e w 1 ( t ) ) + ( 1 − α ) ∗ X e l i t e i f r 2 > 0.1 ( 1 − α ) ∗ ( X n e w 1 ( t ) − r a n d ∗ X e l i t e ) + α ∗ X n e w 1 ( t ) i f r 2 ≤ 0.1 (2) X_{new}^2\left(t+1\right)=\begin{cases}\alpha^*\left(X_{elite}-rand^*X_{new}^1\left(t\right)\right)+(1-\alpha)^*X_{elite}&ifr_2>0.1\\\\(1-\alpha)^*\left(X_{new}^1\left(t\right)-rand^*X_{elite}\right)+\alpha^*X_{new}^1\left(t\right)&ifr_2\leq0.1\end{cases}\tag{2} Xnew2(t+1)= α(XeliterandXnew1(t))+(1α)Xelite(1α)(Xnew1(t)randXelite)+αXnew1(t)ifr2>0.1ifr20.1(2)
海马移动步长a表述为:
α = ( 1 − t T ) 2 t T (3) \alpha=\left(1-\frac tT\right)^{\frac{2t}T}\tag{3} α=(1Tt)T2t(3)
海马群繁殖阶段主要进行局部寻优。在该阶段,海马子代会随机继承探索和捕食阶段父母双方的基因,以寻找最优个体。具体位置更新公式为:
X i o f f s p r i n g = r 3 X i f a t h e r + ( 1 − r 3 ) X i m o t h e r (4) X_i^{offspring}=r_3X_i^{father}+(1-r_3)X_i^{mother}\tag{4} Xioffspring=r3Xifather+(1r3)Ximother(4)

伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Zhao S, Zhang T, Ma S, et al. Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems[J]. Applied Intelligence, 2023, 53(10): 11833-11860.

这篇关于【智能算法】海马优化算法(SHO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849711

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug