时序信号高低频分析——经验模态分解EMD

2024-03-26 17:52

本文主要是介绍时序信号高低频分析——经验模态分解EMD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序信号高低频分析——经验模态分解EMD

介绍

经验模态分解(Empirical Mode Decomposition,EMD)是一种用于时序信号分解的自适应方法,旨在将原始信号分解为多个固有模态函数(Intrinsic Mode Functions,IMF)的线性组合。EMD是一种数据驱动的分解方法,不需要预先定义基函数或滤波器,并且适用于非线性和非平稳信号的分解和分析。

原理

EMD的基本思想是通过挑选信号中的局部极值点(局部最大值和局部最小值)来构造包络线,并利用包络线来提取信号中的各种振动成分。具体步骤如下:

  1. 提取局部极值点:找到信号中的局部最大值和局部最小值点。

  2. 连接局部极值点:连接相邻的局部极值点,得到上包络线和下包络线。

  3. 计算均值包络线:将上包络线和下包络线的均值作为信号的均值包络线。

  4. 计算细化的包络线:用原始信号减去均值包络线得到细化的包络线。

  5. 重复迭代:将细化的包络线作为新的信号进行迭代,直到满足停止条件(如提取的 IMFs 符合某种特定的物理条件)。

  6. 提取IMF:最终得到的信号即为一组固有模态函数(IMFs),它们是信号中包含的各种振动模式。

公式

在EMD的过程中,每次迭代都会得到一组IMFs,这些IMFs满足以下两个条件:

  1. 极值点和零点的个数相同:IMFs 的极值点(局部最大值和局部最小值)和零点(与 x 轴相交的点)的个数相同或最多相差一个。

  2. 对称分布:IMFs 应在零点附近呈现对称分布。

Python实现

为了实现EMD的分解,我们可以使用PyEMD库,它是Python的一个库,提供了实现EMD和Hilbert-Huang变换的功能。

下面是使用PyEMD库绘制IMF图的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD# 生成示例信号
t = np.linspace(0, 1, 1000)
s = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t)# 创建EMD对象
emd = EMD()# 进行EMD分解
IMFs = emd(s)# 绘制IMF图
plt.figure(figsize=(12, 8))
for i, imf in enumerate(IMFs):plt.subplot(len(IMFs), 1, i+1)plt.plot(t, imf, 'r')plt.title(f'IMF {i+1}')
plt.tight_layout()
plt.show()

在这里插入图片描述

以上代码将生成一个示例信号,然后利用PyEMD库进行EMD分解,并绘制每个IMF的图像。每个IMF代表了原始信号中不同的频率成分。

总结

EMD作为一种数据驱动的信号分解方法,具有很好的自适应性和适用性,适用于各种非线性和非平稳信号的分析。通过将原始信号分解为多个IMFs,EMD能够将信号的各种振动模式分离出来,从而更好地理解信号的特性和行为。在实际应用中,EMD常被用于信号处理、振动分析、生物医学工程等领域,为数据分析和特征提取提供了有力的工具。

这篇关于时序信号高低频分析——经验模态分解EMD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849359

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据