时序信号高低频分析——经验模态分解EMD

2024-03-26 17:52

本文主要是介绍时序信号高低频分析——经验模态分解EMD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序信号高低频分析——经验模态分解EMD

介绍

经验模态分解(Empirical Mode Decomposition,EMD)是一种用于时序信号分解的自适应方法,旨在将原始信号分解为多个固有模态函数(Intrinsic Mode Functions,IMF)的线性组合。EMD是一种数据驱动的分解方法,不需要预先定义基函数或滤波器,并且适用于非线性和非平稳信号的分解和分析。

原理

EMD的基本思想是通过挑选信号中的局部极值点(局部最大值和局部最小值)来构造包络线,并利用包络线来提取信号中的各种振动成分。具体步骤如下:

  1. 提取局部极值点:找到信号中的局部最大值和局部最小值点。

  2. 连接局部极值点:连接相邻的局部极值点,得到上包络线和下包络线。

  3. 计算均值包络线:将上包络线和下包络线的均值作为信号的均值包络线。

  4. 计算细化的包络线:用原始信号减去均值包络线得到细化的包络线。

  5. 重复迭代:将细化的包络线作为新的信号进行迭代,直到满足停止条件(如提取的 IMFs 符合某种特定的物理条件)。

  6. 提取IMF:最终得到的信号即为一组固有模态函数(IMFs),它们是信号中包含的各种振动模式。

公式

在EMD的过程中,每次迭代都会得到一组IMFs,这些IMFs满足以下两个条件:

  1. 极值点和零点的个数相同:IMFs 的极值点(局部最大值和局部最小值)和零点(与 x 轴相交的点)的个数相同或最多相差一个。

  2. 对称分布:IMFs 应在零点附近呈现对称分布。

Python实现

为了实现EMD的分解,我们可以使用PyEMD库,它是Python的一个库,提供了实现EMD和Hilbert-Huang变换的功能。

下面是使用PyEMD库绘制IMF图的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD# 生成示例信号
t = np.linspace(0, 1, 1000)
s = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t)# 创建EMD对象
emd = EMD()# 进行EMD分解
IMFs = emd(s)# 绘制IMF图
plt.figure(figsize=(12, 8))
for i, imf in enumerate(IMFs):plt.subplot(len(IMFs), 1, i+1)plt.plot(t, imf, 'r')plt.title(f'IMF {i+1}')
plt.tight_layout()
plt.show()

在这里插入图片描述

以上代码将生成一个示例信号,然后利用PyEMD库进行EMD分解,并绘制每个IMF的图像。每个IMF代表了原始信号中不同的频率成分。

总结

EMD作为一种数据驱动的信号分解方法,具有很好的自适应性和适用性,适用于各种非线性和非平稳信号的分析。通过将原始信号分解为多个IMFs,EMD能够将信号的各种振动模式分离出来,从而更好地理解信号的特性和行为。在实际应用中,EMD常被用于信号处理、振动分析、生物医学工程等领域,为数据分析和特征提取提供了有力的工具。

这篇关于时序信号高低频分析——经验模态分解EMD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849359

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3