本文主要是介绍Caltech-256 数据集处理(三) 训练集和验证集载入PyTorch Dateloader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Caltech-256数据集在PyTorch中的处理:
Caltech-256 数据集处理(一) label提取
Caltech-256 数据集处理(二) 训练集和测试集的制作
Caltech-256 数据集处理(三) 训练集和验证集载入Dateloader
- Caltech-256中的每张图片的大小都不一定,所以在这里需要进行crop操作。
- 这里偷懒了,mean和std去了imagenet的数据,严格来讲需要单独计算。
- rstrip()和strip()可以根据具体场景灵活使用,这里保险起见多用了。
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Imageroot='/media/this/02ff0572-4aa8-47c6-975d-16c3b8062013/'def default_loader(path):return Image.open(path).convert('RGB')class MyDataset(Dataset):def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):fh = open(txt, 'r')imgs = []for line in fh:line = line.rstrip()line = line.strip('\n')line = line.rstrip()words = line.split()imgs.append((words[0],int(words[1])))self.imgs = imgsself.transform = transformself.target_transform = target_transformself.loader = loaderdef __getitem__(self, index):fn, label = self.imgs[index]img = self.loader(fn)if self.transform is not None:img = self.transform(img)return img,labeldef __len__(self):return len(self.imgs)mean = [ 0.485, 0.456, 0.406 ]
std = [ 0.229, 0.224, 0.225 ]transform = transforms.Compose([transforms.Scale(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean = mean, std = std),])train_data = MyDataset(txt=root+'dataset-trn.txt', transform=transform)
test_data = MyDataset(txt=root+'dataset-val.txt', transform=transform)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)
'''
for idx, (data, target) in enumerate(test_loader):if(idx%10==0):print(str(idx)+' '+str(target))for idx, (data, target) in enumerate(train_loader):if(idx%10==0):print(str(idx)+' '+str(target))
'''
这篇关于Caltech-256 数据集处理(三) 训练集和验证集载入PyTorch Dateloader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!