Caltech-256 数据集处理(三) 训练集和验证集载入PyTorch Dateloader

2024-03-26 16:38

本文主要是介绍Caltech-256 数据集处理(三) 训练集和验证集载入PyTorch Dateloader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Caltech-256数据集在PyTorch中的处理:
Caltech-256 数据集处理(一) label提取
Caltech-256 数据集处理(二) 训练集和测试集的制作
Caltech-256 数据集处理(三) 训练集和验证集载入Dateloader

  1. Caltech-256中的每张图片的大小都不一定,所以在这里需要进行crop操作。
  2. 这里偷懒了,mean和std去了imagenet的数据,严格来讲需要单独计算。
  3. rstrip()和strip()可以根据具体场景灵活使用,这里保险起见多用了。
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Imageroot='/media/this/02ff0572-4aa8-47c6-975d-16c3b8062013/'def default_loader(path):return Image.open(path).convert('RGB')class MyDataset(Dataset):def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):fh = open(txt, 'r')imgs = []for line in fh:line = line.rstrip()line = line.strip('\n')line = line.rstrip()words = line.split()imgs.append((words[0],int(words[1])))self.imgs = imgsself.transform = transformself.target_transform = target_transformself.loader = loaderdef __getitem__(self, index):fn, label = self.imgs[index]img = self.loader(fn)if self.transform is not None:img = self.transform(img)return img,labeldef __len__(self):return len(self.imgs)mean = [ 0.485, 0.456, 0.406 ]
std = [ 0.229, 0.224, 0.225 ]transform = transforms.Compose([transforms.Scale(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean = mean, std = std),])train_data = MyDataset(txt=root+'dataset-trn.txt', transform=transform)
test_data = MyDataset(txt=root+'dataset-val.txt', transform=transform)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)
'''
for idx, (data, target) in enumerate(test_loader):if(idx%10==0):print(str(idx)+' '+str(target))for idx, (data, target) in enumerate(train_loader):if(idx%10==0):print(str(idx)+' '+str(target))
'''

这篇关于Caltech-256 数据集处理(三) 训练集和验证集载入PyTorch Dateloader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849137

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.