【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)

2024-03-26 09:36

本文主要是介绍【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



快乐的流畅:个人主页


个人专栏:《C语言》《数据结构世界》《进击的C++》

远方有一堆篝火,在为久候之人燃烧!

文章目录

  • 引言
  • 一、红黑树的概念
  • 二、红黑树的模拟实现
    • 2.1 结点
    • 2.2 成员变量
    • 2.3 插入
      • 情况一:uncle在左,parent在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
      • 情况二:parent在左,uncle在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
  • 三、红黑树的验证
  • 四、红黑树的性能
    • 4.1 优势
    • 4.2 适用场景

引言

之前学习的AVL树,是一种平衡二叉搜索树,它追求绝对平衡,从而导致插入和删除性能较差。而今天学习的红黑树,是另一种平衡二叉搜索树,它追求相对平衡,使得增删查改的性能都极佳,时间复杂度皆为O(log2N),是数据结构中的精华,天才般的设想!

一、红黑树的概念

红黑树,顾名思义,其节点有红和黑两种颜色。

之所以新增结点颜色的标记,是因为通过结点着色方式的限制,能够让红黑树的最长路径不超过最短路径的两倍,以保证相对平衡。


红黑树满足五条性质:

  1. 所有结点非黑即红
  2. 根结点为黑色
  3. NIL结点为黑色
  4. 红色结点的子结点必为黑色
  5. 任意结点到其叶子NIL结点的所有路径,都包含相同的黑色结点

在红黑树中,NIL节点(也称为空节点)是叶子节点的一种特殊表示。它们不是实际存储数据的节点,而是树结构中的占位符,用于定义树的边界。所有的红黑树都以NIL节点为叶子节点,这些NIL节点在视觉上通常不被画出来。


性质解读:

  • 性质4:表明不能有连续的红色结点
  • 性质4+性质5:
    • 理论最短路径:全为黑色结点
    • 理论最长路径:红黑相间

这样,就保证了最长路径不超过最短路径的两倍。

二、红黑树的模拟实现

2.1 结点

enum Color
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col;RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};

细节:

  1. 使用三叉链,增加了指向parent的指针
  2. 使用KV模型,数据存储键值对pair
  3. 结点储存颜色,同时颜色使用枚举
  4. 结点的颜色初始化为红色

说明:为什么结点的颜色初始化为红色呢?因为插入新节点时(不为根部),如果插入黑色,就会直接破坏性质5,导致每条路径黑结点数目不同;而如果插入红色,有可能不会破坏性质4,所以结点初始化为红色更优。

2.2 成员变量

template<class K, class V>
class RBTree
{
protected:typedef RBTreeNode<K, V> Node;
public:
protected:Node* _root = nullptr;
};

2.3 插入

因为红黑树也是二叉搜索树,所以默认成员函数和遍历与之前写的没什么不同,这里重点讲解红黑树的插入。

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (grandparent->_right == parent)//uncle在左,parent在右{Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED)//uncle为红,变色+向上调整{parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else//uncle为空或为黑,变色+旋转{if (parent->_right == cur)//左单旋{RotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//右左旋{RotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}else//parent在左,uncle在右{Node* uncle = grandparent->_right;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else{if (parent->_left == cur)//右单旋{RotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//左右旋{RotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}}_root->_col = BLACK;return true;
}

思路:

  1. 以二叉搜索树的方式正常插入
  2. 讨论并调整结点的颜色,以及调整结构,使之满足红黑树的性质

循环条件:while (parent && parent->_col == RED)

保证了parent存在且为红,grandparent存在且为黑


情况一:uncle在左,parent在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在右部外侧时:

处理方法:

  1. 先对grandparent进行左单旋
  2. 再将parent变黑,grandparent变红

当cur在右部内侧时:

处理方法:

  1. 先对parent进行右单旋
  2. 再对grandparent进行左单旋
  3. 最后将cur变黑,grandparent变红

情况二:parent在左,uncle在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在左部外侧时:

处理方法:

  1. 先对grandparent进行右单旋
  2. 再将parent变黑,grandparent变红

当cur在左部内侧时:

处理方法:

  1. 先对parent进行左单旋
  2. 再对grandparent进行右单旋
  3. 最后将cur变黑,grandparent变红

红黑树插入的核心口诀uncle存在且为红,变色+向上调整,uncle不存在或为黑,变色+旋转


附上旋转的实现

void RotateL(Node* parent)
{Node* grandparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if (grandparent){if (grandparent->_right == parent){grandparent->_right = subR;}else{grandparent->_left = subR;}}else{_root = subR;}subR->_parent = grandparent;
}void RotateR(Node* parent)
{Node* grandparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;if (grandparent){if (grandparent->_right == parent){grandparent->_right = subL;}else{grandparent->_left = subL;}}else{_root = subL;}subL->_parent = grandparent;
}

三、红黑树的验证

bool IsBalance()
{if (_root && _root->_col == RED){cout << "根结点为红色" << endl;return false;}int benchMark = 0;//基准值Node* cur = _root;while (cur){if (cur->_col == BLACK){++benchMark;}cur = cur->_right;}return Check(_root, 0, benchMark);
}bool Check(Node* root, int blackNum, int benchMark)
{if (root == nullptr){if (blackNum != benchMark){cout << "某条路径黑色结点数量不相等" << endl;return false;}return true;}if (root->_col == BLACK){++blackNum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << "存在连续的红色结点" << endl;return false;}return Check(root->_left, blackNum, benchMark)&& Check(root->_right, blackNum, benchMark);
}

细节:

  1. 验证根节点是否为黑
  2. 先计算出一条路径的黑色结点个数作为基准值,再在递归中比较每条路径的黑色结点是否相等
  3. 若该节点为红,检测其parent是否为红,判断是否存在连续的红色节点

四、红黑树的性能

4.1 优势

红黑树是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对AVL树而言,降低了插入和旋转的次数

4.2 适用场景

因此,在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。


真诚点赞,手有余香

这篇关于【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848045

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给

2024/9/8 c++ smart

1.通过自己编写的class来实现unique_ptr指针的功能 #include <iostream> using namespace std; template<class T> class unique_ptr { public:         //无参构造函数         unique_ptr();         //有参构造函数         unique_ptr(