【智能算法】秃鹰搜索算法(BES)原理及实现

2024-03-26 04:12

本文主要是介绍【智能算法】秃鹰搜索算法(BES)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2020年, Alsattar等人受到秃鹰猎食自然行为启发,提出了秃鹰搜索算法(Bald Eagle Search,BES)。

2.算法原理

2.1算法思想

BES主要分为三个阶段选择搜索空间、搜索空间猎物和俯冲捕获猎物
在这里插入图片描述

2.2算法过程

选择搜索空间
秃鹰个体在飞行中的位置代表 1个可行解,在选择搜索空间阶段,秃鹰会挑选猎物聚集数量最多的区域当做搜索空间,该阶段的秃鹰行为由如下方程描述:
P i , n e w ( t ) = P b e s t ( t ) + α × r × ( P m e a n ( t ) − P i ( t ) ) (1) P_{i,\mathrm{new}}(t)=P_{\mathrm{best}}(t)+\alpha\times r\times(P_{\mathrm{mean}}(t)-P_{i}(t))\tag{1} Pi,new(t)=Pbest(t)+α×r×(Pmean(t)Pi(t))(1)
其中,Pi,new(t)表示第 i 只秃鹰的更新位置;Pbest(t)表示秃鹰最佳搜索位置;Pmean(t)表示秃鹰之前搜索结束后所有秃鹰个体的平均分布位置,Pi(t)表示第 i只秃鹰的搜索位置,称作领导者;t是当前迭代次数,参数 α∈[1.5,2]是控制秃鹰搜索位置的参数,参数 α 设置为 2;r 是取值范围在 0~1之间的随机数。
搜索空间猎物
秃鹰个体在完成选择目标搜索空间后,会在该搜索空间中对猎物进行“螺旋式”搜索,并向不同的方向飞行移动以加速搜索进程。该阶段的秃鹰行为如下方程描述:
P i , n e w ( t ) = P i ( t ) + x ( i ) × ( P i ( t ) − P m e a n ( t ) ) + y ( i ) × ( P i ( t ) − P i + 1 ( t ) ) x ( i ) = x r ( i ) max ⁡ ( ∣ x r ∣ ) , y ( i ) = y r ( i ) max ⁡ ( ∣ y r ∣ ) x r ( i ) = r ( i ) × sin ⁡ ( θ ( i ) ) , y r ( i ) = r ( i ) × cos ⁡ ( θ ( i ) ) θ ( i ) = a × π × r a n d , r ( i ) = θ ( i ) + R × r a n d (2) \begin{aligned} &P_{i,\mathrm{new}}(t)=P_{i}(t)+x(i)\times(P_{i}(t)-P_{\mathrm{mean}}(t))+y(i)\times \left(P_{i}(t)-P_{i+1}(t)\right) \\ &x(i)=\frac{x_{r}(i)}{\operatorname*{max}(\left|x_{r}\right|)},y(i)=\frac{y_{r}(i)}{\operatorname*{max}(\left|y_{r}\right|)} \\ &x_{_r}(i)=r(i)\times\sin(\theta(i)),y_{_r}(i)=r(i)\times\cos(\theta(i)) \\ &\theta(i)=a\times\pi\times\mathrm{rand},r(i)=\theta(i)+R\times\mathrm{rand} \end{aligned} \tag{2} Pi,new(t)=Pi(t)+x(i)×(Pi(t)Pmean(t))+y(i)×(Pi(t)Pi+1(t))x(i)=max(xr)xr(i),y(i)=max(yr)yr(i)xr(i)=r(i)×sin(θ(i)),yr(i)=r(i)×cos(θ(i))θ(i)=a×π×rand,r(i)=θ(i)+R×rand(2)
其中,x(i)与 y(i)表示极坐标中秃鹰的位置,取值范围均为(-1,1);θ(i)与 r(i)分别表示螺旋方程的极角与极径;a∈[5,10]与 R∈(0.5,2)表示控制秃鹰螺旋飞行轨迹的参数。
俯冲捕获猎物
秃鹰在搜索空间锁定目标猎物后,从最佳位置快速飞行至目标猎物位置,与此同时所有的秃鹰个体也会朝着最佳位置飞行移动。该阶段的秃鹰行为由如下方程描述:
P i , n e w ( t ) = r a n d × P b e s t ( t ) + x 1 ( i ) × ( P i ( t ) − c 1 × P m e a n ( t ) ) + y 1 ( i ) × ( P i ( t ) − c 2 × P b e s t ( t ) ) x 1 ( i ) = x r ( i ) max ⁡ ( ∣ x r ∣ ) , y 1 ( i ) = y r ( i ) max ⁡ ( ∣ y r ∣ ) x r ( i ) = r ( i ) × sinh ⁡ ( θ ( i ) ) , y r ( i ) = r ( i ) × cosh ⁡ ( θ ( i ) ) θ ( i ) = a × π × r a n d , r ( i ) = θ ( i ) (3) \begin{aligned} &&&P_{i,new}(t)=\mathrm{rand}\times P_{\mathrm{best}}(t)+x_{1}\left(i\right)\times\left(P_{i}(t)-c_{1}\times P_{\mathrm{mean}}(t)\right)+ y_{1}\left(i\right)\times\left(P_{i}(t)-c_{2}\times P_{\mathrm{best}}(t)\right) &&&& \\ &&&x_{1}\left(i\right)=\frac{x_{r}\left(i\right)}{\operatorname*{max}(\left|x_{r}\right|)},y_{1}\left(i\right)=\frac{y_{r}\left(i\right)}{\operatorname*{max}(\left|y_{r}\right|)}&& \\ &&&x_{r}(i)=r(i)\times\sinh\left(\theta(i)\right),y_{r}(i)=r(i)\times\cosh\left(\theta(i)\right)&& \\ &&&\theta(i)=a\times\pi\times\mathrm{rand},r(i)=\theta(i)&& \end{aligned}\tag{3} Pi,new(t)=rand×Pbest(t)+x1(i)×(Pi(t)c1×Pmean(t))+y1(i)×(Pi(t)c2×Pbest(t))x1(i)=max(xr)xr(i),y1(i)=max(yr)yr(i)xr(i)=r(i)×sinh(θ(i)),yr(i)=r(i)×cosh(θ(i))θ(i)=a×π×rand,r(i)=θ(i)(3)
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53: 2237-2264.

这篇关于【智能算法】秃鹰搜索算法(BES)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847246

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义