实至名归!NumPy 官方早有中文教程,结合深度学习,还有防脱发指南

本文主要是介绍实至名归!NumPy 官方早有中文教程,结合深度学习,还有防脱发指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NumPy 官方中文教程,结合深度学习

    • 从原理开始,中文版增加理论介绍板块
    • 注意和深度学习的联系
    • 用户文档和参考手册:覆盖 NumPy 的一切
    • 其他资源及文档
    • 传送门

NumPy 无疑是很多机器学习研究者和开发者的「白月光」。如此优秀的项目,没有中文版怎么行?近日,机器之心发现 NumPy 官方早在去年就已出了一个中文版网站,涵盖 NumPy 的一切。

在这里插入图片描述

在 Github 上一度蝉联最流行的机器学习和数据科学包 NumPy,已经有了非常之系统的中文文档,回想起当初细啃 NumPy 之时,不少人不得不徘徊于各大搜索引擎及平台反复查找,找到的文档也许还很不系统。现在,如果有什么和 NumPy 的问题,只需要浏览这份官方中文文档就足够了。它足够的系统、全面且亲民。亲民到什么程度呢?网站还独一份的配备了「防脱发指南」。

NumPy 是什么?它是大名鼎鼎的,使用 Python 进行科学计算的基础软件包,是 Python 生态系统中数据分析、机器学习、科学计算的主力军,极大简化了向量与矩阵的操作处理。除了计算外,它还包括了:

  • 功能强大的 N 维数组对象。

  • 精密广播功能函数。

  • 集成 C/C+和 Fortran 代码的工具。

  • 强大的线性代数、傅立叶变换和随机数功能

此次中文文档还强调了它两大特性:Ndarray 以及切片和索引,这两部分所涉及的功能在日常操作中是十分常见的。

  • Ndarray:一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。

  • 切片和索引:ndarray 对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

官网地址:https://www.NumPy.org.cn
GitHub地址:https://github.com/teadocs/numpy-cn

这个官方中文项目内容繁多,文章数量庞大。机器之心在这里节选了一些亮点内容,供读者参考。

教程、文档应有尽有,中文版强调和深度学习联系

从原理开始,中文版增加理论介绍板块

这个开源的官方中文版教程可以说是非常全面了。它从最基本的理解 NumPy 开始,教程层层推进,直到让用户掌握进阶的使用方法。

从内容来看,中文版不仅仅是官方英文版本的翻译,还额外增加了「文章」这一栏目。该栏目提供了对 NumPy 背后的矩阵运算原理的详细解释,使得使用者「知其然,也知其所以然」。这是英文版教程中没有的。

以下为这一部分的目录,从这里可以看到,这部分内容主要介绍 NumPy 的基本理论,以及涉及到其应用的理论部分,如数据分析、神经网络实现,以及在其他代码库中的接口等。

基础篇

  • 理解 NumPy

  • NumPy 简单入门教程

  • Python NumPy 教程

  • 创建 NumPy 数组的不同方式

  • NumPy 中的矩阵和向量

进阶篇

  • NumPy 数据分析练习

  • NumPy 神经网络

  • 使用 NumPy 进行数组编程

  • NumPy 实现k均值聚类算法

  • NumPy 实现DNC、RNN和LSTM神经网络算法

其他篇

  • OpenCV中的图像的基本操作

  • MinPy:MXNet后端的NumPy接口

我们截取了这些文章的部分内容,可以看到,这里不仅仅会讲 NumPy 所实现的功能,还提供了原理的图解。

在这里插入图片描述

对于多维数组的直观讲解(部分),可以看出官方提供了很好的理论解释和图示。

注意和深度学习的联系

另一方面,NumPy 中文版教程注意到了深度学习近来的发展趋势,因此推出了结合 NumPy 和百度飞桨框架的深度学习教程。可以说,NumPy 不仅仅只是科学计算工具了,而是深度学习社区的重要组成部分。

如下为这一部分的内容,可以看到,神经网络相关的所有内容,包括原理和相关实现都涵盖到了。在这部分还有一个 7 日的深度学习入门课程,供小白用户参考。

深度学习基础教程

  • 前言

  • 线性回归

  • 数字识别

  • 图像分类

  • 词向量

  • 个性化推荐

  • 情感分析

  • 语义角色标注

  • 机器翻译

  • 生成对抗网络

七日入门深度学习(正在更新)

  • Day 1:初识深度学习

  • Day 1:如何快速入门深度学习?

  • Day 2:图像识别基础与实战

  • Day 3:目标检测基础与实践(一)

  • Day 3:目标检测实战-RCNN算法讲解

  • Day 3:目标检测实战-YOLOv3检测物体

以如下代码为例,这是一个线性回归神经网络构建的代码部分。可以看到,代码使用 NumPy 进行加载和预处理,并使用飞桨构建数据分批等的相关函数。

feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX','PTRATIO', 'B', 'LSTAT', 'convert'
]
feature_num = len(feature_names)
data = np.fromfile(filename, sep=' ') # 从文件中读取原始数据
data = data.reshape(data.shape[0] // feature_num, feature_num)
maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(axis=0)/data.shape[0]for i in six.moves.range(feature_num-1):data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) # six.moves可以兼容python2和python3ratio = 0.8 # 训练集和验证集的划分比例
offset = int(data.shape[0]*ratio)
train_data = data[:offset]
test_data = data[offset:]def reader_creator(train_data):  def reader():  for d in train_data:  yield d[:-1], d[-1:]  return readertrain_reader = paddle.batch(paddle.reader.shuffle(reader_creator(train_data), buf_size=500),batch_size=BATCH_SIZE)test_reader = paddle.batch(paddle.reader.shuffle(reader_creator(test_data), buf_size=500),batch_size=BATCH_SIZE)

用户文档和参考手册:覆盖 NumPy 的一切

当然,最核心的部分当然是 NumPy 本身的文档了。中文版中对用户的使用文档和 NumPy 所有 API 都进行了翻译和整理工作,基本上用户需要的内容都可以在这里找到。

用户文档目录如下,这里还贴心地提供了和「竞品」Matlab 的比较,以及 NumPy 在 C 语言下的 API 使用方法。

  • NumPy 介绍

  • 快速入门教程

  • NumPy 基础知识

  • 其他杂项

  • 与 Matlab 比较

  • 从源代码构建

  • 使用 NumPy 的 C-API

从这里可以看到,官方中文版真的是诚意满满。不仅提供原始文档的翻译,还加上了包括深度学习教程、其他来源的功能+原理解读材料。对于刚上手 NumPy 的人来说,这就是最佳的学习教程。不管是自学也好,还是用于开发也好,都是极好的。

其他资源及文档

如果读到这里你还不过瘾?没关系,官网还有相关配套的文章及视频,让你多样化地保持新鲜感:
在这里插入图片描述
另外,独有一份的防脱发指南让你入坑之时再无后顾之忧:
在这里插入图片描述
面向开发者还单独有一份开发者指南,这是一份详细的操作清单,如何合理的配置及使用开发环境等一系列问题都已被包含在内。

  • NumPy 行为准则

  • Git 教程

  • 设置和使用您的开发环境

  • 开发流程

  • NumPy 基准测试

  • NumPy C 风格指南

  • 发布一个版本

  • NumPy 治理

NumPy 的用户数量庞大,开发者社区也非常繁荣。从包括 PyTorch、NumPy 等开源工具陆续推出中文版文档来看,中文世界在机器学习领域受到了更大的关注。


传送门

在这里插入图片描述
关注微信公众号:迈微电子研发社,回复 “深度学习实用教程” 获取Github开源项目。

在这里插入图片描述

△微信扫一扫关注「迈微电子研发社」公众号

知识星球 (付费群) :社群旨在分享秋招/春招准备攻略(含刷题)、面经和内推机会、学习路线、知识题库等。

在这里插入图片描述

△扫码加入「迈微电子研发社」学习辅导群

在这里插入图片描述

这篇关于实至名归!NumPy 官方早有中文教程,结合深度学习,还有防脱发指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/846981

相关文章

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

IDEA连接达梦数据库的详细配置指南

《IDEA连接达梦数据库的详细配置指南》达梦数据库(DMDatabase)作为国产关系型数据库的代表,广泛应用于企业级系统开发,本文将详细介绍如何在IntelliJIDEA中配置并连接达梦数据库,助力... 目录准备工作1. 下载达梦JDBC驱动配置步骤1. 将驱动添加到IDEA2. 创建数据库连接连接参数

Linux搭建Mysql主从同步的教程

《Linux搭建Mysql主从同步的教程》:本文主要介绍Linux搭建Mysql主从同步的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux搭建mysql主从同步1.启动mysql服务2.修改Mysql主库配置文件/etc/my.cnf3.重启主库my

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

SpringBoot操作MaxComputer方式(保姆级教程)

《SpringBoot操作MaxComputer方式(保姆级教程)》:本文主要介绍SpringBoot操作MaxComputer方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录引言uqNqjoe一、引入依赖二、配置文件 application.properties(信息用自己

JavaScript中的Map用法完全指南

《JavaScript中的Map用法完全指南》:本文主要介绍JavaScript中Map用法的相关资料,通过实例讲解了Map的创建、常用方法和迭代方式,还探讨了Map与对象的区别,并通过一个例子展... 目录引言1. 创建 Map2. Map 和对象的对比3. Map 的常用方法3.1 set(key, v

Java中使用注解校验手机号格式的详细指南

《Java中使用注解校验手机号格式的详细指南》在现代的Web应用开发中,数据校验是一个非常重要的环节,本文将详细介绍如何在Java中使用注解对手机号格式进行校验,感兴趣的小伙伴可以了解下... 目录1. 引言2. 数据校验的重要性3. Java中的数据校验框架4. 使用注解校验手机号格式4.1 @NotBl

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

Tomcat的下载安装与使用教程

《Tomcat的下载安装与使用教程》本文介绍了Tomcat的下载、安装和使用方法,包括在本机和云服务器上部署Tomcat的过程,以及解决启动失败问题的方法... 目录Tomcat的下载安装与使用Tomcat的下载与安装Tomcat在本机运行使用Tomcat在php云服务器上的使用总结Tomcat的下载安装与