Python实战:从12306官网获取全国火车票代售点信息,并通过Pyecharts可视化。

本文主要是介绍Python实战:从12306官网获取全国火车票代售点信息,并通过Pyecharts可视化。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python实战:从12306官网获取全国火车票代售点信息,并通过Pyecharts画出柱状图、折线图、饼图、漏斗图,分析各省火车票代售点数量分布。

通过本文,可以获取12306对于全国省的编码,获取全国 3253 个火车票代售点信息,通过Pyecharts可视化分析,画出柱状图、折线图、饼图、漏斗图。

分析网页

打开 12306 官网,https://www.12306.cn/,点击“信息查询”下面的“代售点”。

键盘 F12 快捷键,或者鼠标右击“检查”打开浏览器的检查页面,刷新网页,在检查页面可以看到allProvince这个请求。(本文首发在“程序员coding”公众号)

allProvince请求 response 的 data 值就是全国的省。

获取全国的省名称:

编写 Python 代码主要用到的库是 requests 和 pandas,首先 requests 库发送请求,获取 response,转换为 json 格式。然后用 pandas 库的 json_normalize 函数将 json 数据展平。最后用 pandas 库将数据保存到 excel 表格内。

完整代码如下:

import requests
import pandas as pd
import time
from datetime import datetimeurl = "https://kyfw.12306.cn/otn/userCommon/allProvince"headers = {"Cookie": "Cookie","User-Agent": "User-Agent"
}content_json = requests.get(url=url, headers=headers).json()
print("等待3s")
time.sleep(3)  # 防止被检测(不要低于3)
print(content_json)  # 用于观察
# df = pd.DataFrame(content_json['data'])
content_list = pd.json_normalize(content_json['data'], errors='ignore')if __name__ == '__main__':# 当前时间作为文件名后缀curr_time = datetime.now()timestamp = datetime.strftime(curr_time, '%Y-%m-%d %H-%M-%S')# time = time.time()  # 时间# 将 DataFrame 保存为 excel 文件content_list.to_excel(f"全国火车票代售点的省-{timestamp}.xlsx", index=False)print("保存完成!")# 查看 DataFrame 的行数和列数。rows = content_list.shapeprint("请求得到的表格行数与列数:", rows)

生成的 excel 表如下:(本文首发在“程序员coding”公众号)

获取全国火车票代售点

在“所在地区”的输入框内任意选择一个省份。

在检查页面可以看到query?province这个请求。

query?province请求 response 的 data 值就是这个省的全部代售点信息。

获取全国火车票代售点

接下来就可以构建代码,使用 pandas 读取全国的省 excel 表,用表中的省这一列执行 apply 函数,获取全国火车票代售点:

完整代码如下:

`import requests
import pandas as pd
import time
from datetime import datetime
from tqdm import tqdmcontent_list = []def ticket_sale_agency(province):url = "https://kyfw.12306.cn/otn/queryAgencySellTicket/query"headers = {"Cookie": "Cookie","User-Agent": "User-Agent"}data = {"province": province,"city": "","county": "",}content_json = requests.get(url=url, headers=headers, params=data).json()print("等待3s")time.sleep(3)  # 防止被检测(不要低于3)print(content_json)  # 用于观察# df = pd.DataFrame(content_json['data'])df = pd.json_normalize(content_json['data']['datas'], errors='ignore')content_list.append(df)if __name__ == '__main__':df = pd.read_excel("./全国火车票代售点的省-2023-12-29 18-12-23.xlsx")tqdm.pandas(desc='获取全国火车票代售点进度条', unit="请求")  # tqdm显示进度条df.progress_apply(lambda x: ticket_sale_agency(x['chineseName']), axis=1)# 调用函数,批量获取地址经纬度,使用tqdm时,将pandas中apply操作替换为progress_apply,并且每个单独的progress_apply前要先执行tqdm.pandas()# concat合并Pandas数据df = pd.concat(content_list)# 将 DataFrame 保存为 excel 文件# 当前时间作为文件名后缀curr_time = datetime.now()timestamp = datetime.strftime(curr_time, '%Y-%m-%d %H-%M-%S')# time = time.time()  # 时间df.to_excel(f"全国火车票代售点-{timestamp}.xlsx", index=False)print("保存完成!")# 查看 DataFrame 的行数和列数。rows = df.shapeprint("请求得到的表格行数与列数:", rows)

pycharm 控制台输出如下,成果获取全国 3253 个火车票代售点信息,全部字段如下:bureau_code、station_telecode、belong_station、province、city_code、city、county、windows_quantity、agency_name、address、addressencode、phone_no、start_time_am、stop_time_am、start_time_pm、stop_time_pm

生成的 excel 表如下:

可视化

Python 常用的可视化库主要包括 Matplotlib、Seaborn、Pyecharts 等,其中 Pyecharts 是我国开发人员开发的,相比较 Matplotlib、Seaborn 等可视化库,Pyecharts 十分符合国内用户的使用习惯,生成的图的可视化效果非常好,其凭借良好的交互性,精巧的图表设计,得到了众多开发者的认可。

接下来,我将通过 Pyecharts 库实现统计各省火车票代售点数量,画出柱状图、折线图、饼图、漏斗图。

在这个过程中,强烈推荐看一下官方文档快速入门案例,理解 Pyecharts 的“链式调用”和 “一切皆 Options 配置”这两个思想。

柱状图

import numpy as np
import pandas as pd
from collections import Counter
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.globals import ThemeType# 导入excel数据
df = pd.read_excel("全国火车票代售点-2023-12-29 18-24-34.xlsx")# 统计频率,并降序排序,freq数据类型是Series
freq = df["province"].value_counts().sort_values(ascending=True)# 生成柱状图
bar = (# 创建柱状图对象Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT,width='1000px', height='600px',page_title="各省火车票代售点数量"))# 设置 x 轴数据.add_xaxis(province_list)  # freq的index索引转为列表# 设置 y 轴数据.add_yaxis("各省火车票代售点数量", count_list, label_opts=opts.LabelOpts(position="top"))  # freq的值转为列表# # 翻转 x 轴 / y 轴# .reversal_axis()# 使用 options 配置项.set_global_opts(title_opts=opts.TitleOpts(title="火车票代售点数量", subtitle="按省统计"),xaxis_opts=opts.AxisOpts(name_rotate=60, axislabel_opts={"rotate": 45})))
# 生成柱状图
bar.render("各省火车票代售点数量-柱状图.html")

翻转 x 轴 / y 轴后,柱状图显示效果如下:(本文首发在“程序员coding”公众号)

折线图

from pyecharts.charts import Line
from pyecharts import options as opts
from pyecharts.globals import ThemeType
# 折线图
line = (Line().add_xaxis(xaxis_data=province_list).add_yaxis(series_name="折线图",y_axis=count_list,symbol="emptyCircle",is_symbol_show=True,label_opts=opts.LabelOpts(is_show=True),).set_global_opts(tooltip_opts=opts.TooltipOpts(is_show=False),xaxis_opts=opts.AxisOpts(type_="category", name_rotate=60, axislabel_opts={"rotate": 45}),yaxis_opts=opts.AxisOpts(type_="value",axistick_opts=opts.AxisTickOpts(is_show=True),splitline_opts=opts.SplitLineOpts(is_show=True),),)
)
line.render("各省火车票代售点数量-折线图.html")

饼图

from pyecharts.charts import Pie
from pyecharts import options as opts
from pyecharts.globals import ThemeType
# 饼图
pie = (# 初始化配置项,参考 `global_options.InitOpts`Pie().add(series_name="各省火车票代售点数量",  # 系列名称data_pair=data_pair_temp,  # 馈入数据radius="35%",  # 饼图半径比例center=["50%", "50%"],  # 饼图中心坐标label_opts=opts.LabelOpts(is_show=False, position="center"),  # 标签位置).set_global_opts(title_opts=opts.TitleOpts(title="各省火车票代售点数量", pos_left="center"),legend_opts=opts.LegendOpts(is_show=True, pos_left="right", orient="vertical")).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%"))  # {d}%为百分比)
pie.render("各省火车票代售点数量-饼图.html")

漏斗图

from pyecharts.charts import Funnel
from pyecharts import options as opts
from pyecharts.globals import ThemeType
`# 漏斗图
funnel = (Funnel(init_opts=opts.InitOpts(theme=ThemeType.LIGHT,width='1000px', height='600px',page_title="各省火车票代售点数量")).add("各省", [list(data) for data in zip(province_list, count_list)]).set_global_opts(title_opts=opts.TitleOpts(title="火车票代售点数量", subtitle="按省统计", pos_left="center"),legend_opts=opts.LegendOpts(is_show=False, pos_left="right", orient="vertical")))
funnel.render("各省火车票代售点数量-漏斗图.html")

这篇关于Python实战:从12306官网获取全国火车票代售点信息,并通过Pyecharts可视化。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845288

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模