c 语言 三元搜索 - 迭代与递归(Ternary Search)

2024-03-25 12:20

本文主要是介绍c 语言 三元搜索 - 迭代与递归(Ternary Search),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        计算机系统使用不同的方法来查找特定数据。有多种搜索算法,每种算法更适合特定情况。例如,二分搜索将信息分为两部分,而三元搜索则执行相同的操作,但分为三个相等的部分。值得注意的是,三元搜索仅对排序数据有效。在本文中,我们将揭开三元搜索的秘密——它是如何工作的,为什么它在某些情况下更快。无论您是编码专家还是刚刚起步,都准备好快速进入三元搜索的世界!
什么是三元搜索?
        三元搜索是一种搜索算法,用于查找排序数组中目标值的位置。它的工作原理是将数组分为三部分,而不是像二分搜索那样分为两部分。基本思想是通过将目标值与将数组分为三个相等部分的两个点上的元素进行比较来缩小搜索空间。
        mid1 = l + (rl)/3 
        mid2 = r – (rl)/3 
三元搜索的工作原理:
        这个概念涉及将数组分成三个相等的段,并确定关键元素(正在寻找的元素)位于哪个段。它的工作原理与二分搜索类似,不同之处在于通过将数组分为三部分而不是两部分来降低时间复杂度。

以下是三元搜索工作的分步说明:
1、初始化:
        从排序数组开始。
        设置两个指针left和right,最初指向数组的第一个和最后一个元素。
2、划分数组:
        计算两个中点mid1和mid2,将当前搜索空间分为三个大致相等的部分:
                mid1 = 左 + (右 – 左) / 3
                mid2 = 右 – (右 – 左) / 3
        该数组现在有效地分为[left, mid1]、(mid1, mid2 ) 和[mid2, right]。
3、与目标比较: .
        如果target等于mid1或mid2处的元素,则查找成功,并返回索引
        如果目标小于mid1处的元素,则将右指针更新为mid1 – 1。
        如果目标大于mid2处的元素,则将左指针更新为mid2 + 1。
        如果目标位于mid1和mid2的元素之间,则将左指针更新为mid1 + 1,将右指针更新为mid2 – 1。
4、重复或结论:
        使用缩小的搜索空间重复该过程,直到找到目标或搜索空间变空。
        如果搜索空间为空并且未找到目标,则返回一个值,指示目标不存在于数组中。
插图: 

三元搜索的递归实现: 

// C program to illustrate
// recursive approach to ternary search
 
#include <stdio.h>
 
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
{
    if (r >= l) {
 
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
 
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
 
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
 
        if (key < ar[mid1]) {
 
            // The key lies in between l and mid1
            return ternarySearch(l, mid1 - 1, key, ar);
        }
        else if (key > ar[mid2]) {
 
            // The key lies in between mid2 and r
            return ternarySearch(mid2 + 1, r, key, ar);
        }
        else {
 
            // The key lies in between mid1 and mid2
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
        }
    }
 
    // Key not found
    return -1;
}
 
// Driver code
int main()
{
    int l, r, p, key;
 
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
    // Starting index
    l = 0;
 
    // end element index
    r = 9;
 
    // Checking for 5
 
    // Key to be searched in the array
    key = 5;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d\n", key, p);
 
    // Checking for 50
 
    // Key to be searched in the array
    key = 50;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d", key, p);

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n)
辅助空间: O(log 3 n)

三元搜索的迭代方法:

// C program to illustrate
// iterative approach to ternary search
 
#include <stdio.h>
 
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
 
{
    while (r >= l) {
 
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
 
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
 
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
 
        if (key < ar[mid1]) {
 
            // The key lies in between l and mid1
            r = mid1 - 1;
        }
        else if (key > ar[mid2]) {
 
            // The key lies in between mid2 and r
            l = mid2 + 1;
        }
        else {
 
            // The key lies in between mid1 and mid2
            l = mid1 + 1;
            r = mid2 - 1;
        }
    }
 
    // Key not found
    return -1;
}
 
// Driver code
int main()
{
    int l, r, p, key;
 
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
    // Starting index
    l = 0;
 
    // end element index
    r = 9;
 
    // Checking for 5
 
    // Key to be searched in the array
    key = 5;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d\n", key, p);
 
    // Checking for 50
 
    // Key to be searched in the array
    key = 50;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d", key, p);

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n),其中 n 是数组的大小。
辅助空间: O(1)

三元搜索的复杂度分析:
时间复杂度:
        最坏情况:O(log 3 N)
        平均情况: θ(log 3 N)
        最好的情况:Ω(1)
        辅助空间: O(1)

二元搜索与三元搜索:
        二分查找的时间复杂度低于三目查找,因为三目查找的比较次数比二分查找多得多。二分搜索用于查找单调函数的最大值/最小值,而三元搜索用于查找单峰函数的最大值/最小值。
        注意:我们也可以对单调函数使用三元搜索,但时间复杂度会比二分搜索稍高。
优点:
        三元搜索可以找到单峰函数的最大值/最小值,而二元搜索不适用。
        三元搜索的时间复杂度为O(2 * log 3 n),比线性搜索更高效,与二分搜索相当。
        非常适合优化问题。
缺点:
        三元搜索仅适用于有序列表或数组,不能用于无序或非线性数据集。
        与二元搜索相比,三元搜索需要更多时间来查找单调函数的最大值/最小值。

何时使用三元搜索:
        当您有一个大型有序数组或列表并且需要查找特定值的位置时。
        当您需要找到函数的最大值或最小值时。
        当您需要在双调序列中找到双调点时。
        当您必须计算二次表达式时
概括:
        三元搜索是一种分治算法,用于查找给定数组或列表中特定值的位置。
        它的工作原理是将数组分为三部分,并对适当的部分递归地执行搜索操作,直到找到所需的元素。 
        该算法的时间复杂度为 O(2 * log 3 n),比线性搜索更有效,但比二分搜索等其他搜索算法不太常用。 
        需要注意的是,要使三元搜索正常工作,要搜索的数组必须进行排序。

这篇关于c 语言 三元搜索 - 迭代与递归(Ternary Search)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844995

相关文章

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭