PWM实现电机的正反转和调速以及TIM定时器

2024-03-25 11:44

本文主要是介绍PWM实现电机的正反转和调速以及TIM定时器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pwm.c

#include "pwm.h"/*
PWM --- PA2 --TIM2_CH3
//将电机信号控制一根接GND,一根接在PA2(TIM2_CH3),
输出PWM控制电机快慢
TIM2挂在APB1 定时器频率:84MHZ*/
void Pwm_Init(void)
{GPIO_InitTypeDef  		GPIO_InitStruct;TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;TIM_OCInitTypeDef 		TIM_OCInitStruct;//2、使能定时器2和相关IO口时钟。RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//3、使能GPIOA时钟:RCC_AHB1PeriphClockCmd (RCC_AHB1Periph_GPIOA,ENABLE);GPIO_InitStruct.GPIO_Pin	= GPIO_Pin_2; 						//引脚2GPIO_InitStruct.GPIO_Mode	= GPIO_Mode_AF;       				//复用功能GPIO_InitStruct.GPIO_Speed	= GPIO_Speed_50MHz;					//速度GPIO_InitStruct.GPIO_OType	= GPIO_OType_PP;					//推挽GPIO_InitStruct.GPIO_PuPd	= GPIO_PuPd_UP;						//上拉//4、初始化IO口为复用功能输出。GPIO_Init(GPIOA, &GPIO_InitStruct);//5、GPIOF9复用映射到定时器2选择哪个复用功能GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_TIM2); //定时器2挂在APB1(42MHZ)  所以定时器频率:84MHZTIM_TimeBaseInitStruct.TIM_Prescaler	= 84-1;  				//84分频  84MHZ/84=1MZ TIM_TimeBaseInitStruct.TIM_Period		= 500-1;				//计数500 用时500usTIM_TimeBaseInitStruct.TIM_CounterMode	= TIM_CounterMode_Up; 	//向上计数TIM_TimeBaseInitStruct.TIM_ClockDivision= TIM_CKD_DIV1;			//分频因子//2、初始化定时器,配置ARR,PSC。TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStruct);TIM_OCInitStruct.TIM_OCMode			= TIM_OCMode_PWM1;  		//PWM模式1TIM_OCInitStruct.TIM_OCPolarity		= TIM_OCPolarity_High;		//极性电平 即输出的有效电平(电机需要的是高电平)TIM_OCInitStruct.TIM_OutputState    = TIM_OutputState_Enable; 	//通道使能//7、初始化输出比较参数: 0C3通道3TIM_OC3Init(TIM2, &TIM_OCInitStruct);//8、使能预装载寄存器: TIM_OC3PreloadConfig(TIM2, 	TIM_OCPreload_Enable); //9、使能自动重装载的预装载寄存器允许位	TIM_ARRPreloadConfig(TIM2,ENABLE);//10、使能定时器。TIM_Cmd(TIM2, ENABLE);}

在这里,使用了TIM定时器,只能说像EXTI外部中断、TIM定时器这些是基础呀~

之前忘了写time.c的总结

以下是利用TIM定时器控制led灯的
/*定时器4配置流程1、使能定时器时钟。RCC_APB1PeriphClockCmd();2、初始化定时器,配置ARR,PSC。TIM_TimeBaseInit();3、启定时器中断,配置NVIC。NVIC_Init();4、设置 TIM4_DIER  允许更新中断TIM_ITConfig();5、使能定时器。TIM_Cmd();6、编写中断服务函数。TIMx_IRQHandler();*/#include "time.h"/*定时器TIM3挂APB1总线下,时钟频率:84MHZTIM3为16位定时器  最大计数值为:65535*/
void Time3_Init(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;NVIC_InitTypeDef  		NVIC_InitStruct;//定义结构体名称//1、能定时器时钟。RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);//1ms产生中断TIM_TimeBaseInitStruct.TIM_Prescaler	= 840-1;  				//84分频  84MHZ/840 = 100KHZ  100 000HZTIM_TimeBaseInitStruct.TIM_Period		= 20000-1;				//计数1000 用时200msTIM_TimeBaseInitStruct.TIM_CounterMode	= TIM_CounterMode_Up; 	//向上计数TIM_TimeBaseInitStruct.TIM_ClockDivision= TIM_CKD_DIV1;			//分频因子//2、初始化定时器,配置ARR,PSC。TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStruct);//3、启定时器中断,配置NVIC。NVIC_InitStruct.NVIC_IRQChannel						= TIM3_IRQn;  	//选择通道NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority	= 2;			//抢占优先级NVIC_InitStruct.NVIC_IRQChannelSubPriority			= 2; 			//响应优先级NVIC_InitStruct.NVIC_IRQChannelCmd					= ENABLE;		//通道使能	//5、配置中断分组(NVIC),并使能中断。NVIC_Init(&NVIC_InitStruct);//4、设置 TIM3_DIER  允许更新中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);//5、使能定时器。TIM_Cmd(TIM3, ENABLE);}/*定时器TIM4挂APB1总线下,时钟频率:84MHZTIM4为16位定时器  最大计数值为:65535*/
void Time4_Init(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;NVIC_InitTypeDef  		NVIC_InitStruct;//1、能定时器时钟。RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);//1ms产生中断
//	TIM_TimeBaseInitStruct.TIM_Prescaler	= 84-1;  				//84分频  84MHZ/84 = 1MHZ  1us数一个数
//	TIM_TimeBaseInitStruct.TIM_Period		= 1000-1;				//计数1000 用时1ms
//	TIM_TimeBaseInitStruct.TIM_CounterMode	= TIM_CounterMode_Up; 	//向上计数
//	TIM_TimeBaseInitStruct.TIM_ClockDivision= TIM_CKD_DIV1;			//分频因子
//	//2、初始化定时器,配置ARR,PSC。
//	TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStruct);//练习3TIM_TimeBaseInitStruct.TIM_Prescaler	= 8400-1;  				//84分频    84MHZ/8400 = 10KHZ  10000HZTIM_TimeBaseInitStruct.TIM_Period		= 10000-1;				//计数10000 用时1sTIM_TimeBaseInitStruct.TIM_CounterMode	= TIM_CounterMode_Up; 	//向上计数TIM_TimeBaseInitStruct.TIM_ClockDivision= TIM_CKD_DIV1;			//分频因子//2、初始化定时器,配置ARR,PSC。TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStruct);	//3、启定时器中断,配置NVIC。NVIC_InitStruct.NVIC_IRQChannel						= TIM4_IRQn;  	//选择通道NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority	= 2;			//抢占优先级NVIC_InitStruct.NVIC_IRQChannelSubPriority			= 2; 			//响应优先级NVIC_InitStruct.NVIC_IRQChannelCmd					= ENABLE;		//通道使能	//5、配置中断分组(NVIC),并使能中断。NVIC_Init(&NVIC_InitStruct);//4、设置 TIM4_DIER  允许更新中断TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE);//5、使能定时器。TIM_Cmd(TIM4, ENABLE);}	//6、编写中断服务函数。1ms
void TIM3_IRQHandler(void)
{if(TIM_GetITStatus(TIM3, TIM_IT_Update) == SET){//定时器处理事件GPIO_ToggleBits(GPIOA,GPIO_Pin_6);}TIM_ClearITPendingBit(TIM3, TIM_IT_Update);
}//6、编写中断服务函数。1ms
void TIM4_IRQHandler(void)
{static int num=0;if(TIM_GetITStatus(TIM4, TIM_IT_Update) == SET){if(num == 0){GPIO_ResetBits(GPIOA, GPIO_Pin_7);//D31一灭4//GPIO_ToggleBits(GPIOF, GPIO_Pin_9);num++;}else{if(num == 4){num=0;}else{num++;} GPIO_SetBits(GPIOA, GPIO_Pin_7);//灭}//定时器处理事件//GPIO_ToggleBits(GPIOA,GPIO_Pin_7);}TIM_ClearITPendingBit(TIM4, TIM_IT_Update);
}

就是上两篇说到的,TIM定时器和EXTI外部中断都会用到NVIC和中断服务函数,配置流程差不多。

在PWM中TIM定时器的作用

TIM(定时器)在嵌入式系统中通常用于生成精确的时间延迟、定时触发等功能。

TIM2 被配置为 PWM 模式,用于生成 PWM 信号来控制电机的速度或位置。

具体来说,TIM 定时器的作用包括:

1. 生成定时的基准时钟信号:定时器可以生成一个基于系统时钟的定时信号,用于精确计时。这对于需要精确时间间隔的应用非常有用,比如周期性任务的触发

2. 生成 PWM 信号:定时器可以通过配置输出比较通道,生成 PWM(脉冲宽度调制)信号。PWM 信号的占空比可以通过定时器的参数配置来调整,从而控制电机的转速或位置

3. 产生精确的时间延迟:定时器可以用来产生精确的时间延迟,比如在需要精确控制时序的情况下,比如在通信协议中生成特定的时钟信号。

4. 实现定时触发功能:定时器可以配置为在达到特定时间后触发中断,用于执行定时任务。这对于需要周期性执行的任务非常有用,比如传感器数据的定时采集、周期性数据传输等。

总之,TIM 定时器在嵌入式系统中是非常重要的功能模块,它提供了精确的时间控制能力,可以满足各种定时、PWM 生成、延迟等需求。

在这个代码中,通过配置 TIM2 定时器和相关的输出比较通道,实现了 PWM 信号的生成,用于控制电机。

 

pwm.h

#ifndef __PWM_H
#define __PWM_H
#include "stm32f4xx.h"void Pwm_Init(void);#endif

 

main.c

#include "stm32f4xx.h"
#include "led.h"
#include "key.h"
#include "exti.h"
#include "delay.h"
#include "pwm.h"//这是一个主函数
int main(void)
{u32 count = 0;//NVIC分组 抢占优先级两位:0~3  响应优先级两位:0~3 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);Delay_Init();Led_Init();Pwm_Init();//不断改变比较值CCRx,达到不同的占空比效果:TIM_SetCompare3(TIM2,499);//GPIO_ToggleBits(GPIOE,GPIO_Pin_14);while(1){for(count=499; count>200; count -= 20){TIM_SetCompare3(TIM2,count);delay_s(1);}}return 0;
}

反转只需将PA2和GND调换位置,从快速到慢速,或者从慢速到快速只需要更改count的数法。 

README

实现电机的正反转和调速只需要用到PWM和delay相关函数 (pwm.c、pwm.h、delay.c、delay.h还要main.c),其中在PWM中使用了TIM定时器、delay相关函数在上几篇(用systick定时器写的精准延时)。

我所实验成功的电机是这种:

这篇关于PWM实现电机的正反转和调速以及TIM定时器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844904

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机