从零开始一步一步掌握大语言模型---(3-词表示-word representation)

本文主要是介绍从零开始一步一步掌握大语言模型---(3-词表示-word representation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

词表示和语言模型

词表示是指把自然语言里面最基本的单位,也就是词,将其转换为机器所能理解的过程。

词表示的目的:

1. 计算词之间的相似度;

2. 推理词之间的关系。

1.最早是如何表示一个词呢?

        设目标词是X,则用X的近义词、反义词等放在一起表示。或者用X的上位词来表示,如NLP隶属于information sciences,sciences等等。但这种表示方法在于,词之间的细微差别难以准确识别。也受限于主观性,数据稀疏性,以及需要大量的人工标注

2.One-hot representation(独热编码)

把每一个词表示成一个独立的符号。每一个词,都会在和词表一样长的向量里面,只有一维对应于该词。该维度上为1,其余维度全为0来表示该词。这种方式对于计算文档之间的相似度时候十分有效,但是对于表示词的时候存在很大问题。因为这种方式会假设词和词向量之间是正交的(不相关的),从而导致任意两个词之间进行计算相似度都为0.

3.使用词的上下文去表示词

这种方式,还是先有一个词表,然后每个词,都用它和它的上下文出现的次数来表示。例如以star举例,它和shining,bright,trees等在文档中一起出现的次数分别是38,45,2,那么就用【,,,38,,,45,2,。。。】这个向量来表示这个词,其余词依此类推。这个向量的长度就是词表的长度,“,”表示star和其余词一起出现的次数,没写上罢了。是这种方式存在的问题是,当所用的词表越来越大时,所用的存储空间也会很大,就是每个词的向量长度都太长了。同时对于某些出现的比较不频繁的词,文档中和这个词一起出现的词就比较少,导致用这种方式所表示的向量比较稀疏,稀疏现象会导致对这个词的表示效果没那么好。

4.词嵌入表示(Word embedding)

是一种分布式的表示(Distribution representation)。这种方式的思想是通过建立一个低维的稠密的向量空间,将每个词尝试学习到这个空间中,用这个空间中某个位置来表示这个词。这种是可以利用大量的文档自动的学习到的。

语言模型

什么是语言模型,语言模型的任务是根据前面出现的单词,预测出下一个单词。

形式化定义如下:

p( Wn |  w1,w2,w3,...,wn-1)

语言模型主要要完成两方面工作:

1.计算一个序列的词成为一句话的概率。也就是计算一个序列的词的联合概率。就是查看已有的一句话或者一个序列的词成为符合语法的概率。

2.计算下一个词是什么。

如何去完成这两项工作?

过去人们假设,一个未来的词(还没出现的词)只会受到它前面的词的影响

引出了一个重要的内容,N-gram Model.

设是4-gram model,那么它就是要根据前面出现的3个词,去预测下一个哪个词出现的概率最大。应该是去词表里面找,一个个试,然后找出频度最大的那个。其实就是去大规模文档中,找这些词出现的频度,然后用频度去预测。

Neural Language Model

这是既N-gram model之后,利用深度学习的一项技术,是利用神经网络去学习词的分布式表示

如何做的呢?首先将每个词表示成一个低维向量,然后将设定的上下文长度的,例如是3,那就将这3个词的向量拼接在一起,就是首尾相接,形成一个更长的向量,然后给这个长向量做一个非线性变化,来预测下一个词出现的概率。

这篇关于从零开始一步一步掌握大语言模型---(3-词表示-word representation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844741

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre