Dataset之UCI_autos_cars:UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略

本文主要是介绍Dataset之UCI_autos_cars:UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dataset之UCI_autos_cars:UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略

目录

UCI_autos_imports-85的简介

UCI_autos_imports-85的安装

UCI_autos_imports-85的案例应用

1、训练一个简单的线性回归模型来预测汽车的价格


UCI_autos_imports-85的简介

UCI机器学习库的汽车数据集,UCI_autos_imports-85数据集是UCI机器学习库中的一个名为“imports-85”的数据集,主要用于汽车进口的数据分析。具体来说,它包含了1985年美国市场上各种汽车类型的进口数据。这个数据集通常用于各种机器学习任务,如分类、回归和聚类等,以便根据汽车的特性来预测其某些属性,或者分析不同汽车类型之间的差异。

数据集通常包含多个特征(或属性),这些特征可能包括汽车的价格、里程数、品牌、排量、燃油类型、车门数量、马力等。此外,还可能包括一些分类标签,用于标识汽车的类别或类型。

为了有效地利用这个数据集,通常需要进行数据预处理,如数据清洗、缺失值处理、特征缩放等。然后,可以选择适当的机器学习算法来训练模型,并进行模型的评估和优化。

需要注意的是,这个数据集可能已经过时,因为它提供的是1985年的数据。如果需要进行现代汽车市场的分析,可能需要寻找更新、更全面的数据集。同时,由于UCI机器学习库中的数据集经常更新,建议直接访问其官方网站或相关文档以获取最新信息和数据。

UCI_autos_imports-85的安装

下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data

UCI_autos_imports-85的案例应用

1、训练一个简单的线性回归模型来预测汽车的价格

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 加载数据
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data"
columns = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration", "num_doors","body_style", "drive_wheels", "engine_location", "wheel_base", "length", "width","height", "curb_weight", "engine_type", "num_cylinders", "engine_size", "fuel_system","bore", "stroke", "compression_ratio", "horsepower", "peak_rpm", "city_mpg","highway_mpg", "price"]
data = pd.read_csv(url, header=None, names=columns)# 数据预处理
# 处理缺失值
data.replace("?", pd.NA, inplace=True)
data.dropna(subset=["price"], inplace=True)
data.fillna(data.mean(), inplace=True)# 选择特征和目标变量
X = data[["engine_size"]]
y = data["price"]# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test)# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

这篇关于Dataset之UCI_autos_cars:UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844407

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na