本文主要是介绍c++基础学习第六天(多态,文件操作,模板),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
c++基础学习第天(多态,文件操作,模板)
文章目录
- 1、多态
- 1.1、多态的基本概念
- 1.2、纯虚函数和抽象类
- 1.3、虚析构和纯虚析构
- 2、文件操作
- 2.1、文本文件
- 2.1.1、写文件
- 2.1.2、读文件
- 2.2、二进制文件
- 2.2.1、写文件
- 2.2.2、读文件
- C++提高编程
- 3、模板
- 3.1、模板的概念
- 3.2、函数模板
- 3.2.1、函数模板语法
- 3.2.2、函数模板注意事项
- 3.2.3、函数模板案例
- 3.2.4、普通函数与函数模板的区别
- 3.2.5、普通函数与函数模板的调用规则
- 3.2.6、模板的局限性
- 3.3、类模板
- 3.3.1、类模板语法
- 3.3.2 类模板与函数模板区别
- 3.3.3、类模板中成员函数创建时机
- 3.3.4、类模板对象做函数参数
- 3.3.5、类模板与继承
- 3.3.6、类模板成员函数类外实现
- 3.3.7、类模板分文件编写
- 3.3.8、类模板与友元
- 3.3.9、类模板案例
提示:以下是本篇文章正文内容,下面案例可供参考
1、多态
1.1、多态的基本概念
多态是C++面向对象三大特性之一
多态分为两类
- 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名(函数重载或运算符重载 )
- 动态多态: 派生类和虚函数实现运行时多态
静态多态和动态多态区别:
- 静态多态的函数地址早绑定 - 编译阶段确定函数地址
- 动态多态的函数地址晚绑定 - 运行阶段确定函数地址
//执行说话的函数
//地址早绑定 在编译阶段确定函数地址
//如果想执行让猫说话,那么这个函数地址就不能提前绑定,需要在运行阶段进行绑定,地址晚绑
void doSpeak (Animal &animal)//Animal animal cat;//c++允许父类和子类之间的类型自动转换
{animal.speak();
}
void test01(){Cat cat;doSpeak(cat):
}
//重写 函数返回值类型 函数名 参数列表 完全相同
//动态多态满足条件
//1、有继承关系
//2、子类重写父类的虚函数
//动态多态使用
//父类的指针或者引用 指向子类对象
class Animal
{
public://Speak函数就是虚函数//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。virtual void speak(){cout << "动物在说话" << endl;}
};class Cat :public Animal
{
public:void speak(){cout << "小猫在说话" << endl;}
};class Dog :public Animal
{
public:void speak(){cout << "小狗在说话" << endl;}};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编void DoSpeak(Animal & animal)
{animal.speak();
}
//
//多态满足条件:
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象void test01()
{Cat cat;DoSpeak(cat);Dog dog;DoSpeak(dog);
}int main() {test01();system("pause");return 0;
}
总结:
多态满足条件
- 有继承关系
- 子类重写父类中的虚函数
多态使用条件
- 父类指针或引用指向子类对象
重写:函数返回值类型 函数名 参数列表 完全一致称为重写
案例://如果想扩展新的功能,需求修改源码//在真是开发中提倡开闭原则//开闭原则:对扩展进行开发,对修改进行关闭//利用多态实现计算器
//多态好处:
//1、组织结构清晰
//2、可读性强
//3、对于前期和后期扩展以及维护性高
1.2、纯虚函数和抽象类
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容
因此可以将虚函数改为纯虚函数
纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点:
- 无法实例化对象
- 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
//纯虚函数
//只要有一个纯虚函数,这个类称为抽象类
//抽象类特点:
//1、无法实例化对象
//2、抽象类的子类必须要重写父类中的纯虚函数,否则也属于抽象类
class Base
{
public://纯虚函数//类中只要有一个纯虚函数就称为抽象类//抽象类无法实例化对象//子类必须重写父类中的纯虚函数,否则也属于抽象类virtual void func() = 0;
};class Son :public Base
{
public:virtual void func() {cout << "func调用" << endl;};
};void test01()
{Base * base = NULL;//base = new Base; // 错误,抽象类无法实例化对象base = new Son;base->func();delete base;//记得销毁
}int main() {test01();system("pause");return 0;
}
1.3、虚析构和纯虚析构
多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方式:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
- 可以解决父类指针释放子类对象
- 都需要有具体的函数实现
虚析构和纯虚析构区别:
- 如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0;
类名::~类名(){}
//父类指针在析构时候不会调用子类中析构函数,导致子类如果有堆区属性,出现内存泄漏
//利用虚析构可以解决父类指针释放子类对象时不干净的问题
virtual ~Animal(){}//纯虚析构需要声明也需要实现
//有了纯虚析构之后,这个类也属于抽象类,无法实例化对象,因为要释放可能生成的堆区
virtual ~Animal()=0;
//纯虚函数(不需要实例化)
virtual void speak()=0;
class Animal {
public:Animal(){cout << "Animal 构造函数调用!" << endl;}virtual void Speak() = 0;//析构函数加上virtual关键字,变成虚析构函数//virtual ~Animal()//{// cout << "Animal虚析构函数调用!" << endl;//}virtual ~Animal() = 0;
};Animal::~Animal()
{cout << "Animal 纯虚析构函数调用!" << endl;
}//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。class Cat : public Animal {
public:Cat(string name){cout << "Cat构造函数调用!" << endl;m_Name = new string(name);}virtual void Speak(){cout << *m_Name << "小猫在说话!" << endl;}~Cat(){cout << "Cat析构函数调用!" << endl;if (this->m_Name != NULL) {delete m_Name;m_Name = NULL;}}public:string *m_Name;
};void test01()
{Animal *animal = new Cat("Tom");animal->Speak();//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏//怎么解决?给基类增加一个虚析构函数//虚析构函数就是用来解决通过父类指针释放子类对象delete animal;
}int main() {test01();system("pause");return 0;
}
总结:
1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象
2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
3. 拥有纯虚析构函数的类也属于抽象类
2、文件操作
程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放
通过文件可以将数据持久化
C++中对文件操作需要包含头文件:fstream
文件类型分为两种:
- 文本文件 - 文件以文本的ASCII码形式存储在计算机中(可看懂)
- 二进制文件 - 文件以文本的二进制形式存储在计算机中,用户一般不能直接读懂它们
操作文件的三大类:
- ofstream:写操作
- ifstream: 读操作
- fstream : 读写操作
2.1、文本文件
2.1.1、写文件
写文件步骤如下:
-
包含头文件
#include -
创建流对象
ofstream ofs; -
打开文件
ofs.open(“文件路径”,打开方式); -
写数据
ofs << “写入的数据”; -
关闭文件
ofs.close();
文件打开方式:
打开方式 | 解释 |
---|---|
ios::in | 为读文件而打开文件 |
ios::out | 为写文件而打开文件 |
ios::ate | 初始位置:文件尾 |
ios::app | 追加方式写文件 |
ios::trunc | 如果文件存在先删除,再创建 |
ios::binary | 二进制方式 |
注意: 文件打开方式可以配合使用,利用|操作符
**例如:**用二进制方式写文件 `ios::binary | ios:: out总结:
* 文件操作必须包含头文件 fstream
* 读文件可以利用 ofstream ,或者fstream类
* 打开文件时候需要指定操作文件的路径,以及打开方式
* 利用<<可以向文件中写数据
* 操作完毕,要关闭文件
#include <fstream>void test01()
{ofstream ofs;ofs.open("test.txt", ios::out);ofs << "姓名:张三" << endl;ofs << "性别:男" << endl;ofs << "年龄:18" << endl;ofs.close();
}int main() {test01();system("pause");return 0;
}
2.1.2、读文件
读文件与写文件步骤相似,但是读取方式相对于比较多
读文件步骤如下:
-
包含头文件
#include <fstream> -
创建流对象
ifstream ifs; -
打开文件并判断文件是否打开成功
ifs.open(“文件路径”,打开方式); -
读数据
四种方式读取 -
关闭文件
ifs.close();
总结:
- 读文件可以利用 ifstream ,或者fstream类
- 利用is_open函数可以判断文件是否打开成功
- close 关闭文件
#include <fstream>
#include <string>
void test01()
{ifstream ifs;ifs.open("test.txt", ios::in);if (!ifs.is_open()){cout << "文件打开失败" << endl;return;}//第一种方式//char buf[1024] = { 0 };//while (ifs >> buf)//{// cout << buf << endl;//}//第二种//char buf[1024] = { 0 };//while (ifs.getline(buf,sizeof(buf)))//{// cout << buf << endl;//}//第三种//string buf;//while (getline(ifs, buf))//{// cout << buf << endl;//}char c;while ((c = ifs.get()) != EOF){cout << c;}ifs.close();}int main() {test01();system("pause");return 0;
}
2.2、二进制文件
以二进制的方式对文件进行读写操作
打开方式要指定为 ios::binary
2.2.1、写文件
二进制方式写文件主要利用流对象调用成员函数write
函数原型 :ostream& write(const char * buffer,int len);
参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数
#include <fstream>
#include <string>class Person
{
public:char m_Name[64];int m_Age;
};//二进制文件 写文件
void test01()
{//1、包含头文件//2、创建输出流对象ofstream ofs("person.txt", ios::out | ios::binary);//3、打开文件//ofs.open("person.txt", ios::out | ios::binary);Person p = {"张三" , 18};//4、写文件ofs.write((const char *)&p, sizeof(p));//5、关闭文件ofs.close();
}int main() {test01();system("pause");return 0;
}
总结:
- 文件输出流对象 可以通过write函数,以二进制方式写数据
2.2.2、读文件
二进制方式读文件主要利用流对象调用成员函数read
函数原型:istream& read(char *buffer,int len);
参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数
#include <fstream>
#include <string>class Person
{
public:char m_Name[64];int m_Age;
};void test01()
{ifstream ifs("person.txt", ios::in | ios::binary);if (!ifs.is_open()){cout << "文件打开失败" << endl;}Person p;ifs.read((char *)&p, sizeof(p));cout << "姓名: " << p.m_Name << " 年龄: " << p.m_Age << endl;
}int main() {test01();system("pause");return 0;
}
C++提高编程
- 本阶段主要针对C++泛型编程和STL技术做详细讲解,探讨C++更深层的使用
3、模板
3.1、模板的概念
模板就是建立通用的模具,大大提高复用性
模板的特点:
- 模板不可以直接使用,它只是一个框架
- 模板的通用并不是万能的
3.2、函数模板
- C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板
- C++提供两种模板机制:函数模板和类模板
3.2.1、函数模板语法
函数模板作用:
建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。
语法:
template<typename T>
函数声明或定义
解释:
template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母
int a = 10;
int b = 20;
//swapInt (a,b);
//利用函数模板交换
//两种方式使用函数模板
//1、自动类型推导
//mySwap (a,b);
//2、显示指定类型
mySwap<int>(a, b);//类型参数化
cout << "a =" << a << endl;
cout << "b =" << b << endl;
//交换整型函数
void swapInt(int& a, int& b) {int temp = a;a = b;b = temp;
}//交换浮点型函数
void swapDouble(double& a, double& b) {double temp = a;a = b;b = temp;
}//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}void test01()
{int a = 10;int b = 20;//swapInt(a, b);//利用模板实现交换//1、自动类型推导mySwap(a, b);//2、显示指定类型mySwap<int>(a, b);cout << "a = " << a << endl;cout << "b = " << b << endl;}int main() {test01();system("pause");return 0;
}
总结:
- 函数模板利用关键字 template
- 使用函数模板有两种方式:自动类型推导、显示指定类型
- 模板的目的是为了提高复用性,将类型参数化
3.2.2、函数模板注意事项
注意事项:
- 自动类型推导,必须推导出一致的数据类型T,才可以使用
- 模板必须要确定出T的数据类型,才可以使用
//利用模板提供通用的交换函数
template<class T>
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{int a = 10;int b = 20;char c = 'c';mySwap(a, b); // 正确,可以推导出一致的T//mySwap(a, c); // 错误,推导不出一致的T类型
}// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{cout << "func 调用" << endl;
}void test02()
{//func(); //错误,模板不能独立使用,必须确定出T的类型func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}int main() {test01();test02();system("pause");return 0;
}
总结:
- 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型
3.2.3、函数模板案例
案例描述:
- 利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
- 排序规则从大到小,排序算法为选择排序
- 分别利用char数组和int数组进行测试
//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{T temp = a;a = b;b = temp;
}template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{for (int i = 0; i < len; i++){int max = i; //最大数的下标for (int j = i + 1; j < len; j++){if (arr[max] < arr[j]){max = j;}}if (max != i) //如果最大数的下标不是i,交换两者{mySwap(arr[max], arr[i]);}}
}
template<typename T>
void printArray(T arr[], int len) {for (int i = 0; i < len; i++) {cout << arr[i] << " ";}cout << endl;
}
void test01()
{//测试char数组char charArr[] = "bdcfeagh";int num = sizeof(charArr) / sizeof(char);mySort(charArr, num);printArray(charArr, num);
}void test02()
{//测试int数组int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };int num = sizeof(intArr) / sizeof(int);mySort(intArr, num);printArray(intArr, num);
}int main() {test01();test02();system("pause");return 0;
}
总结:模板可以提高代码复用,需要熟练掌握
3.2.4、普通函数与函数模板的区别
普通函数与函数模板区别:
- 普通函数调用时可以发生自动类型转换(隐式类型转换)
- 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
- 如果利用显示指定类型的方式,可以发生隐式类型转换
//普通函数
int myAdd01(int a, int b)
{return a + b;
}//函数模板
template<class T>
T myAdd02(T a, T b)
{return a + b;
}//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{int a = 10;int b = 20;char c = 'c';cout << myAdd01(a, b) << endl; //正确cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换}int main() {test01();system("pause");return 0;
}
总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T
3.2.5、普通函数与函数模板的调用规则
调用规则如下:
- 如果函数模板和普通函数都可以实现,优先调用普通函数
- 可以通过空模板参数列表来强制调用函数模板
- 函数模板也可以发生重载
- 如果函数模板可以产生更好的匹配,优先调用函数模板
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{cout << "调用的普通函数" << endl;
}template<typename T>
void myPrint(T a, T b)
{cout << "调用的模板" << endl;
}template<typename T>
void myPrint(T a, T b, T c)
{cout << "调用重载的模板" << endl;
}void test01()
{//1、如果函数模板和普通函数都可以实现,优先调用普通函数// 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到int a = 10;int b = 20;myPrint(a, b); //调用普通函数//2、可以通过空模板参数列表来强制调用函数模板myPrint<>(a, b); //调用函数模板//3、函数模板也可以发生重载int c = 30;myPrint(a, b, c); //调用重载的函数模板//4、 如果函数模板可以产生更好的匹配,优先调用函数模板char c1 = 'a';char c2 = 'b';myPrint(c1, c2); //调用函数模板
}int main() {test01();system("pause");return 0;
}
总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性
3.2.6、模板的局限性
局限性:
- 模板的通用性并不是万能的
例如:
template<class T>void f(T a, T b){a = b;}
数组不可以赋值为数组
在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了
再例如:
template<class T>void f(T a, T b){if(a > b) { ... }}
在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行
因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板
//模板局限性
//模板并不是万能的,有些特定数据类型,需要用具体化方式做特殊实现
//类之间的运算(比较等)-》不好使,可以运算符重载或具体化函数
#include<iostream>
using namespace std;#include <string>class Person
{
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}string m_Name;int m_Age;
};//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{if (a == b){return true;}else{return false;}
}//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age){return true;}else{return false;}
}void test01()
{int a = 10;int b = 20;//内置数据类型可以直接使用通用的函数模板bool ret = myCompare(a, b);if (ret){cout << "a == b " << endl;}else{cout << "a != b " << endl;}
}void test02()
{Person p1("Tom", 10);Person p2("Tom", 10);//自定义数据类型,不会调用普通的函数模板//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型bool ret = myCompare(p1, p2);if (ret){cout << "p1 == p2 " << endl;}else{cout << "p1 != p2 " << endl;}
}int main() {test01();test02();system("pause");return 0;
}
总结:
- 利用具体化的模板,可以解决自定义类型的通用化
- 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板
3.3、类模板
3.3.1、类模板语法
类模板作用:
- 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。
语法:
template<typename T>
类
解释:
template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母
#include <string>
//类模板
template<class NameType, class AgeType>
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};void test01()
{// 指定NameType 为string类型,AgeType 为 int类型Person<string, int>P1("孙悟空", 999);P1.showPerson();
}int main() {test01();system("pause");return 0;
}
总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板
3.3.2 类模板与函数模板区别
类模板与函数模板区别主要有两点:
1. 类模板没有自动类型推导的使用方式:
//Person<string, int>P1("孙悟空", 999);
/Person p("孙悟空",1000);//错误,无法用自动类型推导
Person<string,int>p("孙悟空",1000);//正确,只能用显示指定类型
2. 类模板在模板参数列表中可以有默认参数(函数模板没有)
template<class NameType, class AgeType = int>
Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认
#include <string>
//类模板
template<class NameType, class AgeType = int>
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};//1、类模板没有自动类型推导的使用方式
void test01()
{// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板p.showPerson();
}//2、类模板在模板参数列表中可以有默认参数
void test02()
{Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数p.showPerson();
}int main() {test01();test02();system("pause");return 0;
}
总结:
- 类模板使用只能用显示指定类型方式
- 类模板中的模板参数列表可以有默认参数
3.3.3、类模板中成员函数创建时机
类模板中成员函数和普通类中成员函数创建时机是有区别的:
- 普通类中的成员函数一开始就可以创建
- 类模板中的成员函数在调用时才创建
class Person1
{
public:void showPerson1(){cout << "Person1 show" << endl;}
};class Person2
{
public:void showPerson2(){cout << "Person2 show" << endl;}
};template<class T>
class MyClass
{
public:T obj;//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成void fun1() { obj.showPerson1(); }void fun2() { obj.showPerson2(); }};void test01()
{MyClass<Person1> m;m.fun1();//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}int main() {test01();system("pause");return 0;
}
总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建
3.3.4、类模板对象做函数参数
学习目标:
- 类模板实例化出的对象,向函数传参的方式
一共有三种传入方式:
- 指定传入的类型**** — 直接显示对象的数据类型
- 参数模板化 — 将对象中的参数变为模板进行传递
- 整个类模板化 — 将这个对象类型 模板化进行传递
示例:
#include <string>
//类模板
template<class NameType, class AgeType = int>
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};//1、指定传入的类型
void printPerson1(Person<string, int> &p)
{p.showPerson();
}
void test01()
{Person <string, int >p("孙悟空", 100);printPerson1(p);
}//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{p.showPerson();cout << "T1的类型为: " << typeid(T1).name() << endl;cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{Person <string, int >p("猪八戒", 90);printPerson2(p);
}//3、整个类模板化
template<class T>
void printPerson3(T & p)
{cout << "T的类型为: " << typeid(T).name() << endl;p.showPerson();}
void test03()
{Person <string, int >p("唐僧", 30);printPerson3(p);
}int main() {test01();test02();test03();system("pause");return 0;
}
总结:
- 通过类模板创建的对象,可以有三种方式向函数中进行传参
- 使用比较广泛是第一种:指定传入的类型
3.3.5、类模板与继承
当类模板碰到继承时,需要注意一下几点:
- 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
- 如果不指定,编译器无法给子类分配内存
- 如果想灵活指定出父类中T的类型,子类也需变为类模板
示例:
template<class T>
class Base
{T m;
};//class Son:public Base //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};
void test01()
{Son c;
}//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:Son2(){cout << typeid(T1).name() << endl;cout << typeid(T2).name() << endl;}
};void test02()
{Son2<int, char> child1;
}int main() {test01();test02();system("pause");return 0;
}
总结:如果父类是类模板,子类需要指定出父类中T的数据类型
3.3.6、类模板成员函数类外实现
学习目标:能够掌握类模板中的成员函数类外实现
示例:
#include <string>//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
public://成员函数类内声明Person(T1 name, T2 age);void showPerson();public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}void test01()
{Person<string, int> p("Tom", 20);p.showPerson();
}int main() {test01();system("pause");return 0;
}
总结:类模板中成员函数类外实现时,需要加上模板参数列表
3.3.7、类模板分文件编写
学习目标:
- 掌握类模板成员函数分文件编写产生的问题以及解决方式
问题:
- 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到
解决:
- 解决方式1:直接包含.cpp源文件
- 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制
示例:
person.hpp中代码:
#pragma once
#include <iostream>
using namespace std;
#include <string>template<class T1, class T2>
class Person {
public:Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
类模板分文件编写.cpp中代码
#include<iostream>
using namespace std;//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp(放类模板)
#include "person.hpp"
void test01()
{Person<string, int> p("Tom", 10);p.showPerson();
}int main() {test01();system("pause");return 0;
}
总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp
3.3.8、类模板与友元
学习目标:
- 掌握类模板配合友元函数的类内和类外实现
全局函数类内实现 - 直接在类内声明友元即可
全局函数类外实现 - 需要提前让编译器知道全局函数的存在
示例:
#include <string>//2、全局函数配合友元 类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p);template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}template<class T1, class T2>
class Person
{//1、全局函数配合友元 类内实现friend void printPerson(Person<T1, T2> & p){cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;}//全局函数配合友元 类外实现//全局函数类外实现//加空模板参数列表//如果全局函数是类外实现,需要让编译器提前知道这个函数的存在friend void printPerson2<>(Person<T1, T2> & p);public:Person(T1 name, T2 age){this->m_Name = name;this->m_Age = age;}private:T1 m_Name;T2 m_Age;};//1、全局函数在类内实现
void test01()
{Person <string, int >p("Tom", 20);printPerson(p);
}//2、全局函数在类外实现
void test02()
{Person <string, int >p("Jerry", 30);printPerson2(p);
}int main() {//test01();test02();system("pause");return 0;
}
总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别
3.3.9、类模板案例
案例描述: 实现一个通用的数组类,要求如下:
- 可以对内置数据类型以及自定义数据类型的数据进行存储
- 将数组中的数据存储到堆区
- 构造函数中可以传入数组的容量
- 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
- 提供尾插法和尾删法对数组中的数据进行增加和删除
- 可以通过下标的方式访问数组中的元素
- 可以获取数组中当前元素个数和数组的容量
示例:
myArray.hpp中代码
#pragma once
#include <iostream>
using namespace std;template<class T>
class MyArray
{
public://构造函数MyArray(int capacity){this->m_Capacity = capacity;this->m_Size = 0;pAddress = new T[this->m_Capacity];}//拷贝构造MyArray(const MyArray & arr){this->m_Capacity = arr.m_Capacity;this->m_Size = arr.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++){//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,// 普通类型可以直接= 但是指针类型需要深拷贝this->pAddress[i] = arr.pAddress[i];}}//重载= 操作符 防止浅拷贝问题MyArray& operator=(const MyArray& myarray) {if (this->pAddress != NULL) {delete[] this->pAddress;this->m_Capacity = 0;this->m_Size = 0;}this->m_Capacity = myarray.m_Capacity;this->m_Size = myarray.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++) {this->pAddress[i] = myarray[i];}return *this;}//重载[] 操作符 arr[0]T& operator [](int index){return this->pAddress[index]; //不考虑越界,用户自己去处理}//尾插法void Push_back(const T & val){if (this->m_Capacity == this->m_Size){return;}this->pAddress[this->m_Size] = val;this->m_Size++;}//尾删法void Pop_back(){if (this->m_Size == 0){return;}this->m_Size--;}//获取数组容量int getCapacity(){return this->m_Capacity;}//获取数组大小int getSize(){return this->m_Size;}//析构~MyArray(){if (this->pAddress != NULL){delete[] this->pAddress;this->pAddress = NULL;this->m_Capacity = 0;this->m_Size = 0;}}private:T * pAddress; //指向一个堆空间,这个空间存储真正的数据int m_Capacity; //容量int m_Size; // 大小
};
类模板案例—数组类封装.cpp中
#include "myArray.hpp"
#include <string>void printIntArray(MyArray<int>& arr) {for (int i = 0; i < arr.getSize(); i++) {cout << arr[i] << " ";}cout << endl;
}//测试内置数据类型
void test01()
{MyArray<int> array1(10);for (int i = 0; i < 10; i++){array1.Push_back(i);}cout << "array1打印输出:" << endl;printIntArray(array1);cout << "array1的大小:" << array1.getSize() << endl;cout << "array1的容量:" << array1.getCapacity() << endl;cout << "--------------------------" << endl;MyArray<int> array2(array1);array2.Pop_back();cout << "array2打印输出:" << endl;printIntArray(array2);cout << "array2的大小:" << array2.getSize() << endl;cout << "array2的容量:" << array2.getCapacity() << endl;
}//测试自定义数据类型
class Person {
public:Person() {}Person(string name, int age) {this->m_Name = name;this->m_Age = age;}
public:string m_Name;int m_Age;
};void printPersonArray(MyArray<Person>& personArr)
{for (int i = 0; i < personArr.getSize(); i++) {cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;}}void test02()
{//创建数组MyArray<Person> pArray(10);Person p1("孙悟空", 30);Person p2("韩信", 20);Person p3("妲己", 18);Person p4("王昭君", 15);Person p5("赵云", 24);//插入数据pArray.Push_back(p1);pArray.Push_back(p2);pArray.Push_back(p3);pArray.Push_back(p4);pArray.Push_back(p5);printPersonArray(pArray);cout << "pArray的大小:" << pArray.getSize() << endl;cout << "pArray的容量:" << pArray.getCapacity() << endl;}int main() {//test01();test02();system("pause");return 0;
}
总结:
能够利用所学知识点实现通用的数组
这篇关于c++基础学习第六天(多态,文件操作,模板)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!