使用C++实现单链表的操作与实践

2025-02-10 16:50

本文主要是介绍使用C++实现单链表的操作与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应...

一、单链表的基本概念

单链表是一种由节点组成的线性数据结构,其中每个节点包含数据部分和指向下一个节点的指针。与数组不同,链表的节点在内存中不要求连续存储,而是通过指针连接。因此,链表的插入和删除操作较为灵活,不需要大量的数据移动。

在C++中,我们通过类的封装特性来实现面向对象的链表,这不仅能有效管理链表的内存,还能通过封装实现更易用、更安全的操作。

二、单链表类的设计

我们将通过一个简单的C++类来实现单链表,该类包含基本的链表操作,如插入、删除、打印链表等。

1. 节点的定义

首先,我们定义了一个 Node 结构体来表示链表中的每个节点。每个节点包含一个数据部分 data 和一个指向下一个节点的指针&n编程bsp;next

struct Node {
    int data;      // 数据域
    Node* next;    // 指针域,指向下一个节点
};

2. 链表的类定义

接下来,我们定义 List 类,它包含一个指向链表头部的指针 phead,以及若干成员函数来实现链表的常见操作。

class List {
private:
    Node* phead; // 链表头指针

public:
    // 构造函数
    List() : phead(nullptr) {}

    // 析构函数
    ~List() {
        while (phead != nullptr) {
            PopFront();
        }
    }

    // 创建节点
    Node* CreateNode(int x) {
        Node* node = new Nodandroide;
        node->data = x;
        node->next = nullptr;
        return node;
    }

    // 打印链表
    void PrintList() {
        Node* cur = phead;
        while (cur) {
            cout << cur->data << "-->";
            cur = cur->next;
        }
        cout << "NULL" << endl;
    }

    //eSeNtxKJV 头插法
    void PushFront(int x) {
        Node* newNode = CreateNode(x);
        newNode->next = phead;
        phead = newNode;
    }

    // 尾插法
    void PushBack(int x) {
        Node* newNode = CreateNode(x);
        if (phead == nullptr)
            phead = newNode;
        else {
            Node* tail = phead;
            while (tail->next != nullptr) {
                tail = tail->next;
            }
            tail->next = newNode;
        }
    }

    // 头删
    void PopFront() {
        if (phead == nullptr)
            cout << "链表为空,无法进行删除操作!" << endl;
        else {
            Node* del = phead;
            phead = del->next;
            delete del;
            del = nullptr;
        }
    }

    // 尾删
    void PopBack() {
        if (phead == nullptr)
            cout << "链表为空,无法进行删除操作!" << endl;
        else {
            if (phead->next == nullptr) {
                delete phead;
                phead = nullptr;
            } else {
                Node* tail = phead;
                while (tail->next->next != nullptr) {
                    tail = tail->next;
                }
                delhttp://www.chinasem.cnete tail->next;
                tail->next = nullptr;
            }
        }
    }
};

三、单链表的操作实现

  • PushFront: 在链表的头部插入新节点。
  • PushBack: 在链表的尾部插入新节点。
  • PopFront: 删除链表的头节点。
  • PopBack: 删除链表的尾节点。
  • PrintList: 打印链表中的所有节点。

四、测试与演示

下面的 main 函数展示了如何使用上述链表类实现基本操作:

int main() {
    List ls1;  // 创建一个链表对象

    // 进行一些操作
    ls1.PushBack(1);
    ls1.PushBack(2);
    ls1.PushBack(3);
    ls1.PushBack(4);
    ls1.PushBack(5);

    // 打印链表
    ls1.PrintList();

    // 头删除和尾删除
    ls1.PopFront();
    ls1.PopBack();

    // 头插操作
    ls1.PushFront(9);

    // 打印链表
    ls1.PrintList();

    return 0;
}

五、链表操作的复杂度

  1. PushFront 和 PopFront:这两个操作的时间复杂度为 O(1),因为它们仅仅操作链表的头节点。
  2. PushBack 和 PopBack:这两个操作的时间复杂度为 O(n),需要遍历整个链表,直到找到尾节点。
  3. PrintList:打印链表的时间复杂度为 O(n),需要遍历所有节点。

六、完整代码

#include<IOStream>
using namespace std;
//节点类型声明
structpython Node
{
    int date;
    Node* next;
};
class List
{
private:
    //成员变量
    Node* phead;
public:
    //成员函数
    List() : phead(nullptr) {}//构造函数
    ~List()//析构函数
    {
        while(phead!=NULL)
        {
            PopFront();
        }
    }
    Node* CreateNode(int x)//创建节点
    {
        Node* node=new Node;
        node->date=x;
        node->next=NULL;
        return node;
    }
    void PrintList()//打印链表
    {
        Node *cur=phead;
        while(cur)
        {
            cout<<cur->date<<"-->";
            cur=cur->next;
        }
        cout<<"NULL"<<endl;
    }
    void PushFront(int x)//头插
    {
        Node*newnode=CreateNode(x);
        newnode->next=phead;
        phead=newnode;
    }
    void PushBack(int x)//尾插
    {
        Node*newnode=CreateNode(x);
        if(phead==NULL)
            phead=newnode;
        else
        {
            Node* tail = phead;
            while (tail->next != NULL)
            {
                tail = tail->next;
            }
            tail->next = newnode;
        }

    }
    void PopFront() //头删
    {
        if (phead==NULL)
            cout<<"链表为空,无法进行删除操作!"<<endl;
        else
        {
            Node* del=phead;
            phead=del->next;
            delete del;
            del=NULL;
        }
    }

    void PopBack()  //尾删
    {
        if (phead== NULL)
            cout<<"链表为空,无法进行删除操作!"<<endl;
       else
        {
           if(phead->next==NULL)
           {
               delete phead;
               phead=NULL;
           }
           else
           {
               Node* tail = phead;
               while (tail->next->next != NULL)
               {
                   tail = tail->next;
               }
               delete tail->next;
               tail->next=NULL;
           }
        }
    }

};
int main()
{
    List ls1;
    ls1.PushBack(1);
    ls1.PushBack(2);
    ls1.PushBack(3);
    ls1.PushBack(4);
    ls1.PushBack(5);
    ls1.PrintList();
    ls1.PopFront();
    ls1.PopBack();
    ls1.PushFront(9);
    ls1.PrintList();
    return 0;
}

七、总结

通过面向对象的方式实现单链表,我们可以更加方便和安全地进行链表操作。封装了节点管理、内存管理以及链表操作函数的类,让链表操作更加直观并且容易维护。在实际开发中,链表结构广泛应用于各种算法和数据管理系统,掌握链表的使用可以帮助我们高效地解决许多动态数据管理的问题。

以上就是使用C++实现单链表的操作与实践的详细内容,更多关于C++实现单链表的资料请关注China编程(www.chinasem.cn)其它相关文章!

这篇关于使用C++实现单链表的操作与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153377

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序