机器学习——GBDT算法

2024-03-24 12:36
文章标签 算法 学习 机器 gbdt

本文主要是介绍机器学习——GBDT算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习——GBDT算法

在机器学习领域,梯度提升决策树(Gradient Boosting Decision Trees,简称GBDT)是一种十分强大且常用的集成学习算法。它通过迭代地训练决策树来不断提升模型性能,是一种基于弱学习器的提升算法。本文将详细介绍梯度提升树算法的原理,并与随机森林进行对比,最后给出Python实现的示例代码和总结。

1. 提升树模型

提升树模型是一种基于决策树的集成学习方法,它通过组合多棵决策树来构建一个更强大的模型。提升树模型的基本思想是,将一系列弱学习器(通常是决策树)线性叠加,每一棵树都在尝试修正前一棵树的残差,从而逐步提升整体模型的性能。

2. 梯度提升树

梯度提升树是提升树的一种形式,它通过梯度下降的方法来最小化损失函数。具体来说,梯度提升树使用梯度下降算法来最小化损失函数的负梯度,以此来更新当前模型,使得模型在每一轮迭代中更接近于真实标签。

3. 算法流程

梯度提升树的算法流程如下:

  1. 初始化模型为一个常数值,通常是训练集标签的均值。
  2. 对于每一轮迭代:
    • 计算当前模型的负梯度,作为残差的近似值。
    • 使用负梯度拟合一个回归树模型。
    • 将新拟合的树模型与当前模型进行线性组合,更新模型。
  3. 重复上述步骤直到满足停止条件(如达到最大迭代次数)。

4. 理论公式

梯度提升树的更新公式如下所示:

对于第 i i i轮迭代,模型 F i ( x ) F_i(x) Fi(x),损失函数 L ( y , F i ( x ) ) L(y, F_i(x)) L(y,Fi(x)),学习率 η \eta η,则模型 F i + 1 ( x ) F_{i+1}(x) Fi+1(x)的更新公式为:

F i + 1 ( x ) = F i ( x ) + η h i ( x ) F_{i+1}(x) = F_i(x) + \eta h_i(x) Fi+1(x)=Fi(x)+ηhi(x)

其中, h i ( x ) h_i(x) hi(x)是第 i i i棵树的预测结果。

5. 随机森林与GBDT的区别与联系

随机森林和梯度提升树都是基于决策树的集成学习方法,它们有一些相似之处,也有一些显著的区别。

  • 相似之处:

    • 都是通过组合多个决策树来构建强大的模型。
    • 都可以用于分类和回归问题。
  • 区别:

    • 随机森林是一种自助聚合技术,它通过随机抽样生成多个不同的训练集,并在每个训练集上训练一个决策树,最后通过投票或平均来获得最终结果。而梯度提升树是一种串行技术,它通过迭代地训练决策树,每个决策树都在尝试修正前一棵树的残差。
    • 随机森林中的每棵树是相互独立的,而梯度提升树中的每棵树是依次构建的,每一棵树都在尝试修正前一棵树的错误。
    • 随机森林中每棵树的预测结果是通过投票或平均来决定的,而梯度提升树中每棵树的预测结果是通过加权求和来决定的。

6. Python实现算法

以下是Python实现梯度提升树算法的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from matplotlib.colors import ListedColormap# 加载数据集
iris = load_iris()
X, y = iris.data[:, :2], iris.target  # 取前两个特征# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建梯度提升树模型
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
clf.fit(X_train, y_train)# 在测试集上进行预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Gradient Boosting Accuracy:", accuracy)# 绘制分类结果
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):markers = ('s', 'x', 'o', '^', 'v')colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')cmap = ListedColormap(colors[:len(np.unique(y))])x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)Z = Z.reshape(xx1.shape)plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)plt.xlim(xx1.min(), xx1.max())plt.ylim(xx2.min(), xx2.max())for idx, cl in enumerate(np.unique(y)):plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=[cmap(idx)],marker=markers[idx], label=cl)# 可视化分类结果
plt.figure(figsize=(10, 6))
plot_decision_regions(X_test, y_test, classifier=clf)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(loc='upper left')
plt.title('Gradient Boosting Classification Result on Test Set')
plt.show()

在这里插入图片描述

7. 总结

本文介绍了梯度提升树(Gradient Boosting Decision Trees,GBDT)算法的原理、算法流程、理论公式,并与随机森林进行了对比。梯度提升树是一种基于决策树的集成学习方法,通过迭代地训练决策树来不断提升模型性能。相比于随机森林,梯度提升树是一种串行技术,每个决策树都在尝试修正前一棵树的残差,因此在某些情况下可能会更加灵活和有效。通过Python实现了梯度提升树算法,并在鸢尾花数据集上进行了模型训练和评估。

这篇关于机器学习——GBDT算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841616

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]