SE5 - BM1684 人工智能边缘开发板入门指南 -- 模型转换、交叉编译、yolov5、目标追踪

本文主要是介绍SE5 - BM1684 人工智能边缘开发板入门指南 -- 模型转换、交叉编译、yolov5、目标追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

我们属于SoC模式,即我们在x86主机上基于tpu-nntc和libsophon完成模型的编译量化与程序的交叉编译,部署时将编译好的程序拷贝至SoC平台(1684开发板/SE微服务器/SM模组)中执行。

注:以下都是在Ubuntu20.04系统上操作的,当然Ubuntu18和22也是可以的,因为我们主要是用的官方 docker 环境进行配置。

准备工作

安装docker

首先安装docker

# 更新一下库 
sudo apt-get update
sudo apt-gefat upgrade
# 安装 docker 
sudo apt-get install docker.io
# docker命令免root权限执行 
# 创建docker用户组,若已有docker组会报错,没关系可忽略
sudo groupadd docker  
# 将当前用户加入docker组
sudo gpasswd -a ${USER} docker 
# 重启docker服务 
sudo service docker restart  
# 切换当前会话到新group或重新登录重启X会话 
newgrp docker  

我已经装docker了,这一步没有测试,若有问题请问百度。

下载SDK

在算能官网上,资料下载里下载相关sdk:https://developer.sophgo.com/site/index/material/all/all.html

基础工具包包括:

  • tpu-nntc 负责对第三方深度学习框架下训练得到的神经网络模型进行离线编译和优化,生成最终运行时需要的BModel。目前支持Caffe、Darknet、MXNet、ONNX、PyTorch、PaddlePaddle、TensorFlow等。
  • libsophon 提供BMCV、BMRuntime、BMLib等库,用来驱动VPP、TPU等硬件,完成图像处理、张量运算、模型推理等操作,供用户进行深度学习应用开发。
  • sophon-mw 封装了BM-OpenCV、BM-FFmpeg等库,用来驱动VPU、JPU等硬件,支持RTSP流、GB28181流的解析,视频图像编解码加速等,供用户进行深度学习应用开发。
  • sophon-sail 提供了支持Python/C++的高级接口,是对BMRuntime、BMCV、BMDecoder、BMLib等底层库接口的封装,供用户进行深度学习应用开发。

可以下载这个SDK

image-20230419114430498

这里面包含了models里的所有代码,当然里面很多包是用不到的。

image-20230419114506989

也可以只下载我们需要的sdk

主要是这几个:

tpu-nntc

libsophon

sophon-mw

sophon-demo

sophon-img

sophon-sail

sophon-demo

分别wget 到本地就行,

# 先建个存放的路径
mkdir fugui
# 分别wget 到本地就行
wget https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/10/libsophon_20221027_214818.zip   https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/11/sophon-mw_20221027_183429.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-demo_20221027_181652.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-img_20221027_215835.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-sail_20221026_200216.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-demo_20221027_181652.zip

配置环境

装上解压缩工具

sudo apt-get install unzip

先把这几个压缩文件解压了

unzip \*.zip

创建docker容器:

#如果当前系统没有对应的镜像,会自动从docker hub上下载;此处将tpu-nntc的上一级目录映射到docker内的/workspace目录;这里用了8001到8001端口的映射(使用ufw可视化工具会用到端口号)。如果端口已被占用,请根据实际情况更换为其他未占用的端口。
:~/fugui# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

进入 tpu-nntc,解压缩包

root@39d67fa4c7bb:/workspace/fugui/tpu-nntc_20221028_200521# tar -zxvf  tpu-nntc_v3.1.3-242ef2f9-221028.tar.gz

进入tpu-nntc_v3.1.3-242ef2f9-221028 运行一下命令初始化软件环境

source scripts/envsetup.sh

image-20230419153738140

在下载tensorflow时比较慢,我们都是用pytorch,直接ctrl c跳过,不装他了。

yolov5

这里就不演示官方模型了,直接用我们自己训练的模型进行量化推理。

注意:这里必须用yolov5 v6.1版本

如何训练就不说了,参考:这篇文章

最好使用yolov5s训练,然后对训练后的模型进行转换。比如我训练的是安全帽检测,现在生成了best.pt这个权重文件,为了好区分我改名为anquanmao.pt

将他放在了yolov5的根目录下,然后修改了models文件下的yolo.py中的forward函数。将return x if self.training else (torch.cat(z, 1), x) 修改为:

return x if self.training else x

image-20230419155833459

然后运行

 python export.py --weight anquanmao.pt --include torchscript

这样生成了 anquanmao.torchscript 文件

image-20230419160201616

image-20230419160211412

打开这个权重文件看看是不是和我的一样,只要是yolov5 6.1就肯定一样。

修改 anquanmao.torchscriptanquanmao.torchscript.pt (就是在最后加个.pt)

然后将这个文件拷贝到你的x86服务器里,路径为:

/root/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/data

然后找些你训练的图片,也就是安全帽,200张左右就行

同样上传到那个文件夹里

image-20230419161259835

然后就可以进行模型转换了

# 先备份一下
root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# cp 2_2_gen_int8bmodel.sh 3_2_gen_int8bmodel.sh 
vi cp 2_2_gen_int8bmodel.sh

然后修改里面内容,200太多了,转换起来太慢了,50就够了

image-20230419161524150

修改model_info.sh

root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# vi model_info.sh 
echo "start fp32bmodel transform, platform: ${platform} ......"root_dir=$(cd `dirname $BASH_SOURCE[0]`/../ && pwd)
build_dir=$root_dir/build
# 将这里修改为我们刚才存放的.torchscript.pt文件地址
src_model_file=${root_dir}/data/anquanmao.1_3output.torchscript.pt
src_model_name=`basename ${src_model_file}`
# 这里也修改下吧 yolov5s ——> anquanmao
dst_model_prefix="anquanmao"
dst_model_postfix="coco_v6.1_3output"
fp32model_dir="${root_dir}/data/models/${platform}/fp32model"
int8model_dir="${root_dir}/data/models/${platform}/int8model"
lmdb_src_dir="${root_dir}/data/images"
# 这里修改为我们上传的图片地址
image_src_dir="${root_dir}/data/anquanmao"
# lmdb_src_dir="${build_dir}/coco2017val/coco/images/"
#lmdb_dst_dir="${build_dir}/lmdb/"
img_size=${2:-640}
batch_size=${3:-1}
iteration=${4:-2}
img_width=640
img_height=640

运行转换命令前需要加上权限,否则不能执行

root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# sudo chmod 777 *

然后执行转int8bmodel模型,转FP32也一样

root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# ./ 2_2_gen_int8bmodel.sh

性能不好的机器会非常慢,等待完成即可

编译yolov5 c++程序

/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# 
cd cpp/deepsort_bmcv 
mkdir build && cd build	
# 请根据实际情况修改-DSDK的路径,需使用绝对路径 
cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk .. 
make

复制到开发板

scp ../yolov5_bmcv.soc linaro@192.168.17.153:/data/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv

开发板运行

linaro@bm1684:/data/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv$ ./yolov5_bmcv_drawr.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=BM1684/yolov5s_v6.1_3output_int8_1b.bmodel

目标追踪

注:所有模型转换都是在docker环境中的

先进入docker

这里我们是要在docker环境里编译的,所以先进入docker

:~/tpu-nntc# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

初始化环境

root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev

本C++例程依赖Eigen,您需要在编译c++程序的机器上运行如下命令安装:

sudo apt install libeigen3-dev

先下载相关文件,主要是追踪的测试视频,测试图片,目标追踪的权重,目标检测的权重

# 安装unzip,若已安装请跳过
sudo apt install unzip
chmod -R +x scripts/
./scripts/download.sh

然后编译c++代码

/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv/build# 
cd cpp/deepsort_bmcv
mkdir build && cd build
# 请根据实际情况修改-DSDK的路径,需使用绝对路径。
cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..  
make

这时会生成deepsort_bmcv.soc文件,复制到盒子里

:/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv# scp -r  deepsort_bmcv.soc linaro@192.168.17.125:/data/yolo/sophon-demo/sample/DeepSORT/cpp

测试视频

./deepsort_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel_detector=../../BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor=../../BM1684/extractor_fp32_1b.bmodel --dev_id=0

运行相关代码,这个是检测图片的

cd python
python3 deepsort_opencv.py --input ../datasets/mot15_trainset/ADL-Rundle-6/img1 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对视频追踪

python3 deepsort_opencv.py --input ../datasets/test_car_person_1080P.mp4 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对本地摄像头视频追踪

python3 deepsort_opencv.py --input rtsp://admin:sangfor@123@192.168.17.253 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

人体姿态估计

python3 python/openpose_opencv.py --input rtsp://admin:sangfor@123@192.168.17.253 --bmodel models/BM1684/pose_coco_fp32_1b.bmodel --dev_id 0

生成的文件会放在sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1

:~/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1# ls
compilation.bmodel  input_ref_data.dat  io_info.dat  output_ref_data.dat

然后将转换好的模型推送到开发板

scp compilation.bmodel linaro@{开发板ip地址}:/data/{你的yolov5存放路径}

开发板环境配置

搭建 libsophon 环境

cd libsophon_<date>_<hash>
# 安装依赖库,只需要执行一次
sudo apt install dkms libncurses5
sudo dpkg -i sophon-*.deb
# 在终端执行如下命令,或者log out再log in当前用户后即可使用bm-smi等命令
source /etc/profile

python3 yolov5_new_1.py --input rtsp://admin:1111111a@192.168.16.223 --bmodel yolov5s_v6.1_3output_fp32_1b.bmodel

c++编译环境

安装libsophon

进入sophon-img_20221027_215835这个路径

解压里面的tar包

:~/fugui/sophon-img_20221027_215835# tar -zxvf libsophon_soc_0.4.2_aarch64.tar.gz

将相关库目录和头文件目录拷贝到soc-sdk文件夹中

:~/fugui/sophon-img_20221027_215835/libsophon_soc_0.4.2_aarch64/opt/sophon/libsophon-0.4.2# sudo cp -rf include lib ~/fugui/soc-sdk

安装sophon-opencv 和sophon-ffmpeg

先进入sophon-mw,解压sophon-mw-soc_0.4.0_aarch64.tar.gz这个tar包

:~/fugui/sophon-mw_20221027_183429# tar -zxvf sophon-mw-soc_0.4.0_aarch64.tar.gz

复制相关文件到soc-sdk

:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-ffmpeg_0.4.0//lib sophon-ffmpeg_0.4.0/include/ ~/fugui/soc-sdk:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-opencv_0.4.0//lib sophon-opencv_0.4.0/include/ ~/fugui/soc-sdk

很简单,复制过去,交叉编译的环境就搭建好了

TPU-NNTC环境

这里我们是要在docker环境里编译的,所以先进入docker

:~/fugui# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

然后进入tpu-nntc,初始化环境

root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

进入sophon-demo路径

下载相关文件

:~/fugui/sophon-demo/sample/YOLOv5# chmod -R +x scripts/
:~/fugui/sophon-demo/sample/YOLOv5# ./scripts/download.sh

编译yolov5

我们这里只是交叉编译,不能在x86设备上运行,要复制到我们1684平台

先cmake

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..

在make

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# make

此时会出现.soc文件

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eWPar5Yp-1692844732110)(https://gitee.com/lizheng0219/picgo_img/raw/master/img202325/image-20230421134631891.png)]

把输出的文件传导我们开发板上运行下

scp -r yolov5_bmcv linaro@192.168.17.125:/data/sophon-demo/sample/YOLOv5/cpp/

运行推理图片

./yolov5_bmcv.soc --input=../../coco128 --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

推理视频

./yolov5_bmcv.soc --input=../../test.avi --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

c++推理网络摄像头

./yolov5_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=/data/ai_box/yolov5s_640_coco_v6.1_3output_int8_1b_BM1684.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names
./yolov5_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=/data/models/all16_v6.1_3output_int8_4b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=/data/models/all16.names

网络摄像头:安全帽

 ./yolov5_bmcv.soc  --bmodel=anquanmao.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

Python推理

python3 yolov5_opencv.py --input rtsp://admin:1111111a@192.168.16.222  --bmodel ../yolov5s_v6.1_3output_int8_4b.bmodel

前端只展示一路摄像头,我们只需要做一路摄像头使用多个算法推理。

不展示的摄像头也要实时在后台推理,有出现问题时要及时报警。

这样我们需做出单路摄像头推理多算法(单摄像头单算法也行,把所有检测都放到一个模型里,输出时只输出他选择的那个)

把所有模型统一训练比较简单,后台一块推理

sophon-pipeline

本地编译

docker run -v $PWD/:/workspace -p 8001:8001 -it sophgo/tpuc_dev:latest
source scripts/envsetup.sh
sudo apt-get install -y  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev
./tools/compile.sh soc /workspace/soc-sdk

开发板运行

linaro@bm1684:/data/sophon-pipeline/release/video_stitch_demo$ ./soc/video_stitch_demo --config=cameras_video_stitch1.json

英码

export PYTHONPATH=$PYTHONPATH:/system/libexport
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/system/lib/

python

pip3 install sophon_arm-master-py3-none-any.whl --force-reinstall 
pip3 install opencv-python-headless<4.3

开发板执行命令

python3 python/yolov5_opencv.py --input ../data/images/coco200/000000009772.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 
python3 python/yolov5_opencv.py --input ../data/xiyanimg/000017.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5
python3 python/yolov5_video.py --input rtsp://admin:sangfor@123@192.168.17.253 --model  ../compilation.bmodel

image-20230418164224531

python3 python/yolov5_video.py --input rtsp://admin:1111111a@192.168.16.222  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 
tar -zxf ~/Release_221201-public/sophon-mw_20221227_040823/sophon-mw-soc_*_aarch64.tar.gz

这篇关于SE5 - BM1684 人工智能边缘开发板入门指南 -- 模型转换、交叉编译、yolov5、目标追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841316

相关文章

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数