Keepalive与idle监测及性能优化

2024-03-24 10:28

本文主要是介绍Keepalive与idle监测及性能优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Keepalive 与 idle监测

  1. Keepalive(保活): Keepalive 是一种机制,通常用于TCP/IP网络。它的目的是确保连接双方都知道对方仍然存在并且连接是活动的。这是通过定期发送控制消息(称为keepalive消息)实现的。如果在预定时间内未收到回复,那么发送方可以认为另一方已经失去响应,可能会关闭连接。这种机制对于长时间保持连接,但可能不频繁交换数据的场景特别有用,比如数据库连接或长期的网络会话。
  2. Idle 监测(空闲监测): Idle 监测是指监测网络连接在一段时间内是否有数据传输。如果在这段时间内没有数据交换,那么认为连接是空闲的。空闲监测通常用于管理资源,如关闭长时间未使用的连接来释放资源。这在服务器环境中尤为重要,因为服务器可能需要处理大量的连接,而且资源(如内存和处理能力)是有限的。

两者的主要区别在于它们的目的和实施方式。Keepalive 主要用于确保连接双方知道对方仍然“活着”,并且连接是有效的。而Idle监测则用于确定一个连接在一段时间内是否有活动,以决定是否应该保持或关闭这个连接。Keepalive是通过定期发送控制消息来实现的,而Idle监测是通过观察一段时间内的数据传输活动来实现的。

在Linux内核中也有一个keepalive来确认对端的连接状态是否健康。

net.ipv4.tcp_keepalive_time = 7200
net.ipv4.tcp_keepalive_intvl = 75
net.ipv4.tcp_keepalive_probes = 9

当启用(默认关闭)keepalive 时,TCP 在连接没有数据通过的7200秒后 发送keepalive 探测消息,当探测没有确认时,按75秒的重试频率重发, 一直发9 个探测包都没有确认,就认定连接失效。

所以总耗时一般为:2 小时11 分钟(7200 秒+ 75 秒* 9 次)

Server端开启TCP keepalive的两种方式

serverBootstrap.childOption(ChannelOption.SO_KEEPALIVE,true);serverBootstrap.childOption(NioChannelOption.of(StandardSocketOptions.SO_KEEPALIVE),true);

除了在tcp网络层开启keepalive之外,我们普遍还需要在应用层启动keepalive,一般称之为:应用心跳(心跳机制 ),原因如下:

1、协议分层,各层关注点不同,网络传输层关注网络是否可达,应用层关注是否能正常提供服务

2、tcp的keepalive默认关闭,并且经过路由等中转设备后keepalive包有可能被丢弃

  • Keepalive包的特性:Keepalive包是TCP协议中的空包,不携带数据,仅用于检测对端是否仍然可达。由于这些包没有数据负载,它们在网络中的优先级可能比正常的数据包要低。
  • 网络设备的策略和配置:在复杂的网络环境中,路由器、防火墙或其他中间设备可能会根据自己的配置和策略处理流经的数据包。在某些情况下,这些设备可能会丢弃认为不重要的包,尤其是在网络拥堵或资源紧张的情况下。由于Keepalive包通常被视为不携带重要数据的控制包,因此在某些网络环境中可能会被丢弃。
  • 网络问题:除了被网络设备主动丢弃之外,Keepalive包也可能因为网络问题(如不稳定的连接、路径更改、丢包率高的链路等)而在传输过程中丢失。

当Keepalive包丢失时,发送方可能无法准确判断连接的状态,这可能导致误判连接已断开而提前关闭连接,或者错误地认为一个已经失效的连接仍然有效。因此,在设计和部署基于TCP Keepalive的系统时,需要考虑到这些潜在的网络问题和限制。

3、tcp层的keepalive时间太长,默认>2小时,虽然可改,但是属于系统参数一旦改动影响该机器上的所有应用 另外需要注意:http虽然属于应用层协议,因此会经常听到 HTTP 的头信息:Connection: Keep-Alive,HTTP/1.1 默认使用Connection:keep-alive进行长连接。在一次 TCP 连接中可以完成多个 HTTP 请求,但是对每个请求仍然 要单独发 header,Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中 设定这个时间。这种长连接是一种“伪链接”,而且只能由客户端发送请求,服务端响应。 HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接

Idle 监测,只是负责诊断,诊断后,做出不同的行为,决定Idle 监测的最终用途,一般用来配合keepalive ,减少 keepalive 消息

Idle配合keepalive的发展阶段

刚开始的时候:定时keepalive 消息,keepalive 消息与服务器正常消息交换完全不关联,定时就发送

这样会导致发送很多没有用的消息,我的连接本来就是正常的,我为啥还得额外告诉服务器**“我还活着”**呢?

后来进化为:既然我正常发消息的时候完全没必要发送keepalive消息,那么我就在没有发送消息的时候去发送keepalive消息,也就是空闲检测+判断为Idle的时候才会发送keepalive,无数据发送超过一定的时候之后,并且判定为Idle,再发送keepalive

Idle的好处

  1. 快速释放损坏的、恶意的、很久不用的连接,让系统时刻保持最好的状态
  2. 实际应用中:结合起来使用。按需keepalive ,保证不会空闲,如果空闲,关闭连接

IdleStateHandler 是 Netty 框架中的一个处理空闲状态的类,主要用于检测并处理 Channel(连接)在一段时间内的空闲状态。这个构造函数接受三个时间参数和一个时间单位参数:

  1. readerIdleTimeSeconds:读超时时间,即如果在指定时间内没有从 Channel 中读取到任何数据(即客户端没有向服务器发送任何数据),则认为该 Channel 进入了读空闲状态。
  2. writerIdleTimeSeconds:写超时时间,即如果在指定时间内 Channel 没有写出任何数据(即服务器没有向客户端发送任何数据),则认为该 Channel 进入了写空闲状态。
  3. allIdleTimeSeconds:所有类型的超时时间,即在指定时间内 Channel 既没有读取也没有写出任何数据,则认为该 Channel 进入了整体空闲状态。

当进入空闲状态的时候就会去调用channelIdle方法

@Slf4j
public class ClientWriterIdleHandler extends IdleStateHandler {public ClientWriterIdleHandler() {super(0, 5, 0, TimeUnit.SECONDS);}@Overrideprotected void channelIdle(ChannelHandlerContext ctx, IdleStateEvent evt) throws Exception {super.channelIdle(ctx, evt);if(evt==IdleStateEvent.FIRST_WRITER_IDLE_STATE_EVENT){//发送 keepaliveUserInfo userInfo=new UserInfo();userInfo.setName("this is keepalive message");log.info("发送心跳信息");ctx.channel().writeAndFlush(userInfo);}}
}public class ServerReaderIdleHandler extends IdleStateHandler {public ServerReaderIdleHandler() {super(10, 0, 0, TimeUnit.SECONDS);}@Overrideprotected void channelIdle(ChannelHandlerContext ctx, IdleStateEvent evt) throws Exception {if(evt==IdleStateEvent.FIRST_READER_IDLE_STATE_EVENT){ctx.channel().close();}}
}

高级特性,性能优化

参数调优

  • linux系统参数,例如:/proc/sys/net/ipv4/tcp_keepalive_time

  • netty支持的系统参数设置,例如:serverbootstrap.option(ChannelOption.SO_BACKLOG,1024),且设置形式有两种:

  • 1、针对ServerSocketChannel:通过.option设置

  • 2、针对SocketChannel:通过.childOption设置

Linux参数: 进行tcp连接时,系统为每个tcp连接都会创建一个socket句柄,其实就是一个文件句柄(linux一切皆为文件),但是系统对于每个进程能够打开的文件句柄数量 做了限制,超出则报错:Too many open file 设置方式:有很多种,ulimit -n [xxx] 注意:该命令修改的数值,只对当前登录用户目前使用的环境有效,系统重启或用户退出后失效,所以建议的做法是可以作为启动脚本的一部分,在启动程序前执行。

对于Netty来说:

针对ScoketChannel,7个,通过.childOption设置,常用的两个如下:

1、SO_KEEPALIVE,tcp层keepalvie,默认关闭,一般选择关闭tcp keepalive 而使用应用keepalive

2、TCP_NODELAY:设置是否启用nagle算法,该算法是tcp在发送数据时将小的、碎片化的数据拼接成一个大的报文一起发送,以 此来提高效率,默认是false(启用),如果启用可能会导致有些数据有延时,如果业务不能忍受,小报文也需要立即发送则可以禁用该算法

针对ServerScoketChannel,通过.Option设置,常用的一个如下:

1、SO_BACKLOG:最大等待连接数量,netty在linux下该值的获取是通过:io.netty.util.NetUtil完成的

应用诊断->完善线程名

添加Handler名称 & 日志

线程模型优化

EventExecutorGroup business = new UnorderedThreadPoolEventExecutor(10,new DefaultThreadFactory("business"));pipeline.addLast(business,"ProtoStuffDecoder",new ProtoStuffDecoder());

零拷贝

Netty 中的 Zero-copy 与上面我们所提到到 OS 层面上的 Zero-copy 不太一样, Netty的 Zero-coyp 完全是在用户态(Java 层面)的, 它的 Zero-copy 的更多的是偏向于 优化数据操作 这样的概念,Netty的Zero-copy主要体现在如下几个方面:

  • 1、Direct Buffer: 直接堆外内存区域分配空间而不是在堆内存中分配, 如果使用传统的堆内存分配,当我们需要将数据通过 socket发送的时候,需要将数据从堆内存拷贝到堆外直接内存,然后再由直接内存拷贝到网卡接口层,通过Netty提供的Direct Buffers直接将数据分配到堆外内存,避免多余的数据拷贝
  • 2、 Composite Buffers:传统的ByteBuffer,如果需要将两个ByteBuffer中的数据组合到一起,我们需要首先创建一个 size=size1+size2大小的新的数组,然后将两个数组中的数据拷贝到新的数组中。但是使用Netty提供的组合ByteBuf,就可以避 免这样的操作,因为CompositeByteBuf并没有真正将多个Buffer组合起来,而是保存了它们的引用,从而避免了数据的拷贝, 实现了零拷贝;同时也支持 slice 操作, 因此可以将 ByteBuf 分解为多个共享同一个存储区域的 ByteBuf, 避免了内存的拷贝。
  • 3、通过 wrap 操作, 我们可以将 byte[] 数组、ByteBuf、ByteBuffer等包装成一个 Netty ByteBuf 对象, 进而避免了拷贝操作
  • 4、通过 FileRegion 包装的FileChannel.tranferTo (Java nio)实现文件传输, 可以直接将文件缓冲区的数据发送到目标 Channel, 避免了传统通过循环 write 方式导致的内存拷贝问题

这篇关于Keepalive与idle监测及性能优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841311

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

电力系统中的A类在线监测装置—APView400

随着电力系统的日益复杂和人们对电能质量要求的提高,电能质量在线监测装置在电力系统中得到广泛应用。目前,市场上的在线监测装置主要分为A类和B类两种类型,A类和B类在线监测装置主要区别在于应用场景、技术参数、通讯协议和扩展性。选择时应根据实际需求和应用场景综合考虑,并定期维护和校准。电能质量在线监测装置是用于实时监测电力系统中的电能质量参数的设备。 APView400电能质量A类在线监测装置以其多核

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者