中心极限定理之为何高斯分布在自然界中广泛存在

2024-03-24 09:30

本文主要是介绍中心极限定理之为何高斯分布在自然界中广泛存在,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么自然界中许多随机现象可以用正态分布或 近似正态分布来描述,在计算机视觉,图像处理,机器学习模型中应用尤为广泛。

 

定理5.5 独立同分布情形下的中心极限定理

设有独立同分布的随机变量序列 X_1, X_2, \cdots, 且 $ E(X_i) = \mu, $ $ D(X_i) = \sigma^2 \ne 0 , $ 则对任意的实数 x, 有

这篇关于中心极限定理之为何高斯分布在自然界中广泛存在的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841176

相关文章

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

easyui同时验证账户格式和ajax是否存在

accountName: {validator: function (value, param) {if (!/^[a-zA-Z][a-zA-Z0-9_]{3,15}$/i.test(value)) {$.fn.validatebox.defaults.rules.accountName.message = '账户名称不合法(字母开头,允许4-16字节,允许字母数字下划线)';return fal

【408DS算法题】039进阶-判断图中路径是否存在

Index 题目分析实现总结 题目 对于给定的图G,设计函数实现判断G中是否含有从start结点到stop结点的路径。 分析实现 对于图的路径的存在性判断,有两种做法:(本文的实现均基于邻接矩阵存储方式的图) 1.图的BFS BFS的思路相对比较直观——从起始结点出发进行层次遍历,遍历过程中遇到结点i就表示存在路径start->i,故只需判断每个结点i是否就是stop

模具要不要建设3D打印中心

随着3D打印技术的日益成熟与广泛应用,模具企业迎来了自建3D打印中心的热潮。这一举措不仅为企业带来了前所未有的发展机遇,同时也伴随着一系列需要克服的挑战,如何看待企业引进增材制造,小编为您全面分析。 机遇篇: 加速产品创新:3D打印技术如同一把钥匙,为模具企业解锁了快速迭代产品设计的可能。企业能够迅速将创意转化为实体模型,缩短产品从设计到市场的周期,抢占市场先机。 强化定制化服务:面

Nacos Config 配置中心支持配置共享

文章目录 一、什么是配置中心二、Nacos Config2.1 Nacos Config 工作原理 (★)2.2 Nacos Config 的使用2.3 动态刷新2.4 配置共享2.4.1 同一个微服务的不同环境之间共享配置2.4.2 不同微服务中间共享配置 一、什么是配置中心 微服务架构下关于配置文件的存在以下问题: 配置文件相对分散。在一个微服务架构下,配置文件会随

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

ELK+Spring Cloud搭建分布式日志中心

ELK+Spring Cloud搭建分布式日志中心 1.ELK简介2.资源包下载3.Elasticsearch安装3.1 解压Elasticsearch3.2 修改Elasticsearch的配置文件3.3 修改系统配置3.4 启动Elasticsearch 4.ElasticSearch-head插件安装5.Logstash安装6.Kibana安装7.SpringCloud集成logsta