uva 10359 Tiling

2024-03-24 08:18
文章标签 uva tiling 10359

本文主要是介绍uva 10359 Tiling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题:
In how many ways can you tile a 2 × n rectangle by 2 × 1 or 2 × 2 tiles?Here is a sample tiling of a 2 × 17 rectangle.
这里写图片描述
Input
Input is a sequence of lines, each line containing an integer number 0 ≤ n ≤ 250.
Output
For each line of input, output one integer number in a separate line giving the number of possible tilings
of a 2 × n rectangle.
Sample Input
2
8
12
100
200
Sample Output
3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251

中文:
给你一个宽2长n的长条,让你用2×2或者是1×2的砖块平铺,问有多少中铺砖方法。

#include <bits/stdc++.h>
using namespace std;
const int maxn=1000;/*精度位数*/
/*(必选)类与基础功能定义,用法类似于unsigned(非负)*/
class bign
{friend istream& operator>>(istream&,bign&);/*输入运算符友元*/friend ostream& operator<<(ostream&,const bign&);/*输出运算符友元*/friend bign operator+(const bign&,const bign&);/*加号运算符友元*/friend bign operator*(const bign&,const bign&);/*乘号运算符友元*/friend bign operator*(const bign&,int);/*高精度乘以低精度乘法友元*/friend bign operator-(const bign&,const bign&);/*减号运算符友元*/friend bign operator/(const bign&,const bign&);/*除法运算符友元*/friend bign operator%(const bign&,const bign&);/*模运算符友元*/friend bool operator<(const bign&,const bign&);/*逻辑小于符友元*/friend bool operator>(const bign&,const bign&);/*逻辑大于符友元*/friend bool operator<=(const bign&,const bign&);/*逻辑小于等于符友元*/friend bool operator>=(const bign&,const bign&);/*逻辑大于等于符友元*/friend bool operator==(const bign&,const bign&);/*逻辑等符友元*/friend bool operator!=(const bign&,const bign&);/*逻辑不等符友元*/private:int len,s[maxn];public:bign(){memset(s,0,sizeof(s));len=1;}bign operator=(const char* num){int i=0,ol;ol=len=strlen(num);while(num[i++]=='0'&&len>1)len--;memset(s,0,sizeof(s));for(i=0;i<len;i++)s[i]=num[ol-i-1]-'0';return *this;}bign operator=(int num){char s[maxn];sprintf(s,"%d",num);*this=s;return *this;}bign(int num){*this=num;}bign(const char* num){*this=num;}string str() const{int i;string res="";for(i=0;i<len;i++)res=char(s[i]+'0')+res;if(res=="")res="0";return res;}};
/*(可选)基本逻辑运算符重载*/
bool operator<(const bign& a,const bign& b)
{int i;if(a.len!=b.len)return a.len<b.len;for(i=a.len-1;i>=0;i--)if(a.s[i]!=b.s[i])return a.s[i]<b.s[i];return false;}
bool operator>(const bign& a,const bign& b){return b<a;}
bool operator<=(const bign& a,const bign& b){return !(a>b);}
bool operator>=(const bign& a,const bign& b){return !(a<b);}
bool operator!=(const bign& a,const bign& b){return a<b||a>b;}
bool operator==(const bign& a,const bign& b){return !(a<b||a>b);}
/*(可选)加法运算符重载*/
bign operator+(const bign& a,const bign& b)
{int i,max=(a.len>b.len?a.len:b.len),t,c;bign sum;sum.len=0;for(i=0,c=0;c||i<max;i++){t=c;if(i<a.len)t+=a.s[i];if(i<b.len)t+=b.s[i];sum.s[sum.len++]=t%10;c=t/10;}return sum;}
/*(可选)乘法运算符重载(高精度乘高精度)*/
bign operator*(const bign& a,const bign& b)
{int i,j;bign res;for(i=0;i<a.len;i++){for(j=0;j<b.len;j++){res.s[i+j]+=(a.s[i]*b.s[j]);res.s[i+j+1]+=res.s[i+j]/10;res.s[i+j]%=10;}}res.len=a.len+b.len;while(res.s[res.len-1]==0&&res.len>1)res.len--;if(res.s[res.len])res.len++;return res;}
/*高精度乘以低精度(注意:必须是bign*int顺序不能颠倒,要么会与高精度乘高精度发生冲突*/
bign operator*(const bign& a,int b)
{int i,t,c=0;bign res;for(i=0;i<a.len;i++){t=a.s[i]*b+c;res.s[i]=t%10;c=t/10;}res.len=a.len;while(c!=0){res.s[i++]=c%10;c/=10;res.len++;}return res;}
/*(可选)减法运算符重载*/
bign operator-(const bign& a,const bign& b)
{bign res;int i,len=(a.len>b.len)?a.len:b.len;for(i=0;i<len;i++){res.s[i]+=a.s[i]-b.s[i];if(res.s[i]<0){res.s[i]+=10;res.s[i+1]--;}}while(res.s[len-1]==0&&len>1)len--;res.len=len;return res;}
/*(可选)除法运算符重载(注意:减法和乘法运算和>=运算符必选)*/
bign operator/(const bign& a,const bign& b)
{int i,len=a.len;bign res,f;for(i=len-1;i>=0;i--){f=f*10;f.s[0]=a.s[i];while(f>=b){f=f-b;res.s[i]++;}}while(res.s[len-1]==0&&len>1)len--;res.len=len;return res;}
/*(可选)模运算符重载(注意:减法和乘法运算和>=运算符必选)*/
bign operator%(const bign& a,const bign& b)
{int i,len=a.len;bign res,f;for(i=len-1;i>=0;i--){f=f*10;f.s[0]=a.s[i];while(f>=b){f=f-b;res.s[i]++;}}return f;}
/*(可选)X等运算符重载(注意:X法必选)*/
bign& operator+=(bign& a,const bign& b)
{a=a+b;return a;}
bign& operator-=(bign& a,const bign& b)
{a=a-b;return a;}
bign& operator*=(bign& a,const bign& b)
{a=a*b;return a;}
bign& operator/=(bign& a,const bign& b)
{a=a/b;return a;}
/*可选前缀++/--与后缀++/--(注意:加法必选)*/
bign& operator++(bign& a)
{a=a+1;return a;}
bign& operator++(bign& a,int)
{bign t=a;a=a+1;return t;}
bign& operator--(bign& a)
{a=a-1;return a;}
bign& operator--(bign& a,int)
{bign t=a;a=a-1;return t;}
istream& operator>>(istream &in,bign& x)
{string s;in>>s;x=s.c_str();return in;}
ostream& operator<<(ostream &out,const bign& x)
{out<<x.str();return out;}
bign f[251];
int main()
{ios::sync_with_stdio(false);f[0]=f[1]=1;for(int i=2;i<=250;i++)f[i]=f[i-1]+2*f[i-2];int n;while(cin>>n)cout<<f[n]<<endl;return 0;
}

思路:
高精度,递推。
考虑长为n的铺法,等于f(n-1)加上一个1×2的竖条,再加上f(n-2)加上一个2×2或者两个横着放到1×2的横条。
f[n]=f[n-1]+f[n-2]*2

这篇关于uva 10359 Tiling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840989

相关文章

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=