深度学习 (自动求导)

2024-03-24 05:44
文章标签 学习 深度 自动 求导

本文主要是介绍深度学习 (自动求导),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍:

深度学习是一种机器学习方法,其使用神经网络模型来进行学习和预测。自动求导是深度学习中的一项重要技术,用于计算神经网络中各个参数对损失函数的偏导数。

在深度学习中,我们通常使用一个损失函数来衡量模型的预测结果与真实值之间的差异。然后,我们通过调整神经网络中的参数,以最小化损失函数,从而改善模型的预测能力。

自动求导是指计算某个函数的导数时,由计算机自动完成的过程。在深度学习中,我们需要计算损失函数对网络参数的偏导数,以便进行参数更新。由于神经网络的结构复杂且参数众多,手动计算这些偏导数是非常困难和耗时的。自动求导的引入,使得我们可以方便地计算损失函数对参数的偏导数。

在深度学习框架中,例如PyTorch或TensorFlow,自动求导功能已经内置在其中。一旦我们定义了损失函数和网络模型,然后通过反向传播算法,自动求导将会自动计算损失函数对网络参数的偏导数。在实际的训练过程中,我们只需要调用优化算法,并将这些偏导数作为梯度传递给优化算法,以更新网络参数。

总结来说,深度学习中的自动求导是一种方便快捷地计算损失函数对网络参数的偏导数的技术,它使得我们可以更加高效地训练神经网络模型。

import torchx= torch.arange(4.0)x.requires_grad_(True) #等价于 需要把梯度存储x.grad#存储的梯度在这(x关于y的导数),默认值为Noney=2*torch.dot(x,x)#dot 累积 y=2*x^2y.backward()#调用反向传播函数自动计算y关于x每个分量的梯度
x.grad#打印梯度
'''tensor([ 0.,  4.,  8., 12.]) '''x.grad==4*x
'''tensor([True, True, True, True])'''## 计算另一个函数
x.grad.zero_()#需要清零,不然会累积梯度
y = x.sum()#求x和的函数
print('y:', y)
y.backward()
print('x.grad:', x.grad)#梯度都应该为1
'''
y: tensor(6., grad_fn=<SumBackward0>)
x.grad: tensor([1., 1., 1., 1.])
'''

 非标量变量的反向传播:

# 非标量变量的反向传播
x.grad.zero_()
print('x:', x)
y = x * x#矩阵相乘
y.sum().backward()
print('x.grad:', x.grad)'''
x: tensor([0., 1., 2., 3.], requires_grad=True)
x.grad: tensor([0., 2., 4., 6.])
'''

分离计算:

#分离计算
x.grad.zero_()
y=x*x# y关于x的函数
u = y.detach()#将y转化为标量
z = u*x#z就等于 标量 乘 x ,它的梯度应该就为u
z.sum().backward()
x.grad==u'''
tensor([True, True, True, True])
'''x.grad.zero_()
y.sum().backward()
x.grad==2*x#意味着y还是关于x的函数,但是u不是
'''
tensor([True, True, True, True])
'''

python控制流的梯度计算:

#python控制流的梯度计算
def f(a):b = a * 2print(b.norm())while b.norm() < 1000:  # 求L2范数:元素平方和的平方根b = b * 2if b.sum() > 0:c = belse:c = 100 * breturn cprint('2.Python控制流的梯度计算')
a = torch.tensor(2.0)  # 初始化变量
a.requires_grad_(True)  # 1.将梯度赋给想要对其求偏导数的变量
print('a:', a)
d = f(a)  # 2.记录目标函数
print('d:', d)
d.backward()  # 3.执行目标函数的反向传播函数
print('a.grad:', a.grad)  # 4.获取梯度'''
2.Python控制流的梯度计算
a: tensor(2., requires_grad=True)
tensor(4., grad_fn=<CopyBackwards>)
d: tensor(1024., grad_fn=<MulBackward0>)
a.grad: tensor(512.)
'''

这篇关于深度学习 (自动求导)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840606

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

IDEA如何让控制台自动换行

《IDEA如何让控制台自动换行》本文介绍了如何在IDEA中设置控制台自动换行,具体步骤为:File-Settings-Editor-General-Console,然后勾选Usesoftwrapsin... 目录IDEA如何让控制台自http://www.chinasem.cn动换行操作流http://www

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne